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1 Probability Space

1.1 Notation

• x ∈ A x is an element of A ”Set membership”

• A ⊆ Ω A is a subset of Ω

• A ⊂ Ω A is a proper subset of Ω

• A ∪B Union of two sets

• A ∩B Intersection of two sets

• Ac Complementary Set

• A\B A ∩Bc intersection of A with not B

• ∅ Empty set

1.2 Probability Space

• Random experiment is used to describe any situation which has a set of possible outcomes,
each of which occurs with a particular probability.

• Sample space Ω is the set of all possible outcomes of the random experiment.

• Event any subset A ⊆ Ω

• Probability P mapping/function from events to a number in the interval [0, 1]. Therefore, specify
{P (A),A ⊂ Ω}

• Probability Space defined as: (Ω, P )

• Indicator function for a set or event E defined as:

IE(t) =

{
1 if t ∈ E,
0 if t 6∈ E

• Examples:

– Toss a coin twice. Ω = {HH,HT, TH, TT} - Finite set
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– The temperature is a perturbation of seasonal average. Ω = (−∞,∞) - Real line

– Toss a coin n times. One elementary outcome is ω = (o1, o2, ..., on)

Ω = {ω = (o1, o2, ..., on) : oi ∈ {H,T}}.

– Toss a coin n times, the event E that the first head Occurs on third toss is:

E = {ω = (T, T,H, o4, o5, ..., on) : oi ∈ {H,T} for i > 3}.

P (E) = (1/2)3

1.3 Axioms of probability

A probability P assigns each event E, E ⊂ Ω, a number in [0,1] and P must satisfy following properties:

• P (Ω) = 1

• For events A,B such that A ∩B = ∅ (i.e. disjoint) then P (A ∪B) = P (A) + P (B)

• if A1, A2... are disjoint then P (∪∞i=1Ai) =
∑∞

i=1 P (Ai).

• The third one implies the second one.

Examples:

(i) Show that, if event A ⊂ B then P (A) ≤ P (B).

B = (B ∩ Ac) ∪ A = (B\A) ∪ A

P (B) = P (B\A) + P (A) ≤ P (A)

(ii) Show that, P (Ac) = 1− P (A)
Ω = A ∪ Ac

P (Ω) = P (A) + P (Ac) = 1

(iii) Defining P: Ω is a finite discrete set, i.e. Ω = {ω1, ω2, ..., ωn}. Let p1, p2, ..., pn be non negative
numbers that add to 1. For any event A, set,

P (A) =
n∑
i=1

IA(ω1)Pi

Let Pi = 1/n. Then
P ({ωi}) = pi = 1/n

i.e. each outcome is equally likely. This is the uniform probability distribution.
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1.4 Conditional Probability

• Definition: The conditional probability of event A occurring given that event B has occurred :

P (A|B) =
P (A ∩B)

P (B)
, for P (B) > 0

– Think of P (A|B) as the fraction of times A occurs among those in which B occurs.

– AB is shorthand for A ∪B
– Example: Verify any set given set G is a probability i.e. P (·|G) is a probability

Firstly, P (Ω|G) = P (Ω ∪G)/p(G) = 1

Secondly, for disjoint events A and B P (A ∩B|G) = P (AG ∩BG)/p(G)

= (P (AG) + P (BG))/p(G)

= P (A|G) + P (B|G)

• Probability Chain Rule

P (A1...An) = P (A1)P (A2|A1)...P (An|An−1, ..., A1) = P (A1)
n∏
i=2

P (Ai|Ai−1, ..., A1) =
n∏
i=1

P (Ai|Ai−1, ..., A1)

• Independence: two events A and B are independent if

P (AB) = P (A ∪B) = P (A)P (B)

– if A and B are independent then P (A|B) = P (A)

• Bayes’ Theorem:

P (A|B) =
P (B|A)P (A)

P (B)

– Example: A is the event the email is spam and B is the event the email contains ”free”. We
know P (B|A) = 0.8 and P (B|not A) = 0.1 and P (A) = 0.25 What is the probability the
email is spam given the email contains ”Free”?

P (A|B) =
P (B|A)P (A)

P (B)
=

0.8 ∗ 0.25

0.8 ∗ 0.25 + 0.1 ∗ 0.75
= 0.727

– This is an example of an expert system.

1.5 Random Variables

• Definition: Given a probability space(Ω, P ), a random variable is a function X(ω) which maps
each element ω of the sample space Ω onto a point on the real line.

– Example: Flipping a coin twice. Sample Space: Ω = {HH,HT, TH, TT} Define X(ω) be
the number of heads.
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ω P ({ω}) X(ω)

TT 0.25 0
TH 0.25 1
HT 0.25 1
HH 0.25 2

x Pr(X = x)

0 0.25
1 0.5
2 0.25

– The second table does not mention the sample space. The range of X is listed along with the
probability associated.

– However, there is a sample space lurking behind every definition of a rv.

– The Probability that X = x is inherited from the definition of (Ω, P ) and the mapping X(ω)

– For any set A ⊂ (−∞,∞), we define

Pr(X ∈ A) = P ({ω : X(ω) ∈ A})

• Discrete random variable: range is a finite set, say {x1, ..., xi, ..., xM} or a countable set, say{x1, x2, ...}.

– A set E is countable if you can define a one-to-one mapping from E to the set of integers .

– Examples: all rational number, all even number. The interval[0, 1] is not countable.

– Definition: Discrete rv X with range {x1, x2, ...}, the pmf is the function px : {x1, x2, ...}
→ [0, 1] where

pX(xi) = Pr(X = xi)and
∞∑
i=1

pX(xi) = 1

The pmf is a complete description: for any set A,

Pr(X ∈ A) =
∞∑
i=1

IA(xi)pX(xi)

• Continuous random variable: defined as having a probability density function(pdf)

– Definition: A random variable is continuous if there exists a non-negative function fX(x) ≥ 0
such that

∫∞
−∞ fX(x) dx = 1 and for any set A

Pr(X ∈ A) =

∫ ∞
−∞

IA(x)fX(x) dx

– Example: A = [a, b] then

Pr(X ∈ A) = Pr(a ≤ X ≤ b) =

∫ b

a

fX(x) dx

∗ pdf fX assigns 0 probability to any particular point x ∈ R Thus Pr(X = x) = 0 for all
x.

Pr(X ∈ [a, b]) = Pr(X ∈ (a, b]) = Pr(X ∈ (a, b))

∗ This means a continuous rv has no concentration of probability at points like a discrete
rv does
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• Cumulative distribution function: Describe both discrete and continuous random variables and is
defined to be

FX(x) = Pr(X ≤ x)

Properties:

1. 0 ≤ FX(x) ≤ 1

2. FX(x) is non-decreasing as x increases

3. Pr(x1 < X ≤ x2) = FX(x2)− FX(x1)

4. limx→−∞ FX(x) = 0 and limx→∞ FX(x) = 1

5. If X is a continuous r.v. then FX(x) is continuous

6. If X is discrete then FX(x) is right-continuous: FX(x) = limt↓x F (t) for all x

For Property 6

– For a discrete rv with range x1, ..., xi, ..., xM

FX(x) =
M∑
j=1

P (xj)I[xj ,∞)(x) ( [ touch ( not touch)

is a step function

• CDF and PDF for continuous rv

FX(x) = Pr(X ≤ x) =

∫ x

−∞
fx(t) dt

fX(t) =
dFX(t)

dx

– CDF is useful when transformation of a random variable

Y = r(X) r is a strictly increasing function

FY (y) = Pr(Y ≤ y)

= Pr(r(X) ≤ y)

= Pr(X ≤ r−1(y))

= FX(r−1(y))

fY (y) = fX(r−1(y)) ∗ dr
−1(y)

dy

2 Multivariates

2.1 Bivariates

2.1.1 Discrete bivariates

• joint pmf: pX,Y (xi, yj) = Pr(X = xi, Y = yj)

• marginal pmf:

PX(xk) =
n∑
j=1

PX,Y (xk, yj), PY (yk) =
m∑
i=1

PX,Y (xi, yk)
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• Independent if:
pX,Y (x, y) = pX(x)pY (y) for all (x,y)

• Conditional Probability

pX|Y (x|y) =
p(X, Y )(x, y)

PY (y)

2.1.2 Continuous bivariates

• For continuous random variables X and Y, we call f(x, y) their Joint probability density
function:

–
∫∞
−∞

(∫∞
−∞ f(x, y) dx

)
dy = 1 and

– for any sets(events) A ⊂ R and B ⊂ R

Pr(X ∈ A, Y ∈ B) =

∫ ∞
−∞

IB(y)

(∫ ∞
−∞

IA(x)f(x, y) dx

)
dy

• Independent
If and only if: fX,Y (x, y) = fX(x)fY (y)

• Conditional probability density function:

fX|Y (x|y) =
f(X, Y )(x, y)

fY (y)

Moreover, for all sets A

Pr(X ∈ A|Y = y) =

∫ ∞
−∞

IA(x)fX|Y (x|y) dx

• Example: Let X1, X2 be two independent rvs with f1(x1), f2(x2) and let Y = X1 + X2. Find the
pdf fX1,y and fY .

Write the joint pdf using conditional pdf formula:

fX1,y(x1, y) = f1(x1)fY |X1(y|x1).

Since Y = X2 + x1, fY |X1(y|x1) = f2(y − x1)

fY (y) =

∫ ∞
−∞

f2(y − x1)f1(x1) dx1

which is the convolution of f1 and f2

2.1.3 Expected Value Operations

• Expectation

– Definition: The Expected value or mean value or first moment of X is

E{X} =

{ ∑
x xpX(x) Discrete∫∞
−∞ xfX(x) dx Continuous
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• Expectation of a function of rv

– Definition: For any function r(·) compute E{r(X)} by replacing x in the above formulae with
r(x) For example, the higher moments are E(Xn) set r(X) = Xn

– Example: For an event A:

E{IA(X)} =

{ ∑
x IA(X)pX(x) Discrete∫∞
−∞ IA(X)fX(x) dx Continuous

Then E{IA(X)} = Pr{X ∈ A}
– Example: Take a unit length stick and break it at random. Find the mean of the long piece.

Call the longer piece Y and the break point X. Then X is a uniform rv in [0, 1], Y = max
{X, 1−X} and,

EY = E(max{X, 1−X})

=

∫ ∞
−∞

max{x, 1− x}fX(x) dx

=

∫ 1

0

max{x, 1− x} dx

=

∫ 0

0

.5(1− x) dx+

∫
0

.51x dx = 0.75

• Expectation of a function of bivariates

– Definition: The mean of a function r(X, Y ) of the bivariate (X, Y ) is

E{r(X, Y )} =

{ ∑
y

∑
x r(x, y)pX,Y (x, y) Discrete∫∞

−∞

∫∞
−∞ r(x, y)fX,Y (x, y) dxdy Continuous

– The conditional expectation is

E{r(X, Y )|Y = y} =

{ ∑
x r(x, y)pX|Y (x|y) Discrete∫∞
−∞ r(x, y)fX|Y (x|y) dx Continuous

– By using conditional probability we can calculate E{r(X, Y )}:

E{r(X, Y )} =

∫ ∞
−∞

∫ ∞
−∞

r(x, y)fX,Y (x, y) dxdy

=

∫ ∞
−∞

(∫ ∞
−∞

r(x, y)fX|Y (x|y) dx

)
dy

=

∫ ∞
−∞

E{r(X, Y )|Y = y}fY (y) dy

• Rule of iterated expectation
Discrete:

E{r(X, Y )} = E(E{r(X, Y )|Y })
Continuous:

E{r(X, Y )|Y = y} =

∫ ∞
−∞

r(x, y)fX|Y (x|y) dx

E{r(X, Y )} =

∫ ∞
−∞

E{r(X, Y )|Y = y}fY (y) dy
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2.2 Multivariates

2.2.1 Definition

• Let X1, X2, ..., Xn be n continuous/discrete random variables. We call X = (X1, ..., Xn ∈ Rn a
continuous/discrete random vector.

• Let X = (X1, ..., Xn ∈ Rn be a continuous random vector. Let f(x1, ...xn) be a non-negative
function that integrates to 1. Then f is called the pdf of the random vector X if

Pr(X1 ∈ A1, ..., Xn ∈ An) =

∫ ∞
−∞

IAn(xn)...

∫ ∞
−∞

IA1(x1)f(x1, ...xn)dx1 ...dxn

• pdf of Xi is obtained by integrating f(x1, .., xn) over the full range except xi:

fXi(xi) =

∫ ∞
−∞

...

∫ ∞
−∞

f(x1, .., xn)dx1 ...dxi−1
dxi+1

dxn

This is called ith marginal of f(x1, .., xn)

2.2.2 Independence

• Definition: The n random variables X1, ...Xn are independent if and only if for every A1, ...An

Pr(X1 ∈ A1, ..., Xn ∈ An) = Pr(X1 ∈ A1)...P r(Xn ∈ An)

• joint pdf = product of marginals:

f(x1, ..., xn) = fX1(x1)...fXn(xn)

– Example: The pdf f(x1, ..., xn) of a Gaussian random vector X = (X1, ..., Xn) is

1

(2π)n/2(detC)1/2
exp

{
−1

2
(x−m)C−1(x−m)T

}
Where m = (m1, ...,mn) is the row vector of means and C is the covariance matrix

mi = E{Xi} and [C]i,j = E{(Xi −mi)(Xj −mj)}

Show that if independent, Ci,j = 0 for i 6= j then

f(x1, ..., xn) = fX1(x1)...fXn(xn)

Proof: Call Ci,i = σ2
i

(x−m)C−1(x−m)T =
n∑
i=1

(xi −mi)
2

σ2
i

Hence f(x1, ..., xn) is

1

(2π)n/2(detC)1/2
exp

{
−1

2

n∑
i=1

(xi −mi)
2

σ2
i

}

=
1√

(2π)σ1...
√

(2π)σn

n∏
i=1

exp

{
−1

2

(xi −mi)
2

σ2
i

}
= fX1(x1)...fXn(xn)
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• If X1, ..., Xn are independent then

E{
n∏
i=1

Xi} =
n∏
i=1

E{Xi}

That is the expectation of the product is the product of expectation

2.2.3 Change of variables

• The change of variable formula can be applied to random vectors. LetY1
...
Yn

 =

g1(X1, ..., Xn)
...

gn(X1, ..., Xn)


or

Y = G(X)

• If G is invertible then X = G−1(Y ). Let H(Y ) = G−1(Y ). SoX1
...
Xn

 =

h1(Y1, ..., Yn)
...

hn(Y1, ..., Yn)


• The Jacobian matrix of partial derivatives of H(y) is formed:

J(y) =


∂
∂y1
h1 . . . ∂

∂yn
h1

...
∂
∂y1
hn . . . ∂

∂yn
hn


Then

fY (y) = fX(H(y))| det J(y)|

– Example: Let X1, ..., Xn be independent Gaussian rv where Xi is N (0, 1) Let S be an invert-
ible matrix and m a column vector. Let Y = m + SX where X = (X1, .., Xn)T . Show Y is
also a Gaussian random vector.

Use the Change of variable result:

H(Y ) = S−1(Y −m)

The Jacobian MatrixJ(y):
J(y) = S−1

Applying change of variable formula gives

fY (y) = fX(S−1(y −m))| detS−1|

where fX(x1, ..., xn) = 1
(2π)n/2

exp
{
−1

2
xTx

}
fY (y) =

| detS−1|
(2π)n/2

exp

{
−1

2
(y −m)T (S−1)TS−1(y −m)

}
is the density of a Gaussian vector with mean m and covariance matrix SST . Note that
detS−1 = 1/detS, det(SST ) = detS detST = (detS)2
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– An affine transformation of a Gaussian vector is still a Gaussian vector. This gives a method
for generating any Gaussian vector from iid Gaussian random variables.

– To Generate a N (m,Σ) vector:

∗ Decompose the symmetric matrix Σ = SST .

∗ Output m+ SX where X = (X1, ..., Xn)T where X1, ..., Xn are independent N (0, 1)

2.2.4 Characteristic function

• Definition: The characteristic function of a discrete or continuous random variable X is:

ϕX(t) = E{exp(itX)}, t ∈ R

For a random vector X = (X1, X2, ..., Xn),

ϕX(t) = E{exp(itTX)}, t ∈ Rn

Similarly to Fourier Transform, the characteristic function uniquely describes a pdf.

– Example: Show ϕX(t) = exp(itX) exp(−1
2
σ2t2) when X is a Gaussian random variable with

mean µ and variance σ2.

E{exp(itX)}

=

∫ ∞
−∞

eitx
1√
2πσ

exp

(
− 1

2σ2
(x− µ)2

)
dx

= eitµ
∫ ∞
−∞

eits
1√
2πσ

exp

(
− 1

2σ2
s2

)
ds, let s = x− µ

= eitµe−
1
2
σ2t2 Fourier transform table

– Example: Compute the characteristic function ϕY (t) of Y =
∑n

i=1Xi where Xi are indepen-
dent random variables.

E{exp(itY )}
= E{exp(itX1) exp(itX2)... exp(itXn)}
= E{exp(itX1)}E{exp(itX2)}...E{exp(itXn)}
= ϕX1(t)...ϕXn(t)

– The characteristic function of the sum of independent random variables is the product of
their individual characteristic functions.

– Example: (Moments) Using ϕX(t), compute E{Xn}

dn

dtn
ϕX(t) = E

{
dn

dtn
exp(itX)

}
= E{inXn exp(itX)}

Thus inE{Xn} = dn

dtn
ϕX(t = 0) (Putting t=0 for the above equation and make the exponential

go to 1)

• Equality of characteristic functions: Suppose that X and Y are random vectors with same char-
acteristic functions: ϕX(t) = ϕY (t) for all t ∈ Rn. Then X and Y have the same probability
distribution
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• Example using characteristic function: Let X1, X2, ..., Xn be independent Gaussian random vari-
ables where Xi is N (0, 1). Then Y = m + SX, where m ∈ Rd where d < n, is the multivariate
Gaussian with mean m and covariance SST .

Verify the result using characteristic function, that is let t ∈ Rd and compute E{exp (itTY )}

exp (itTY ) = exp(itTm) exp(itTSX)

= exp(itTm) exp(ir1X1)... exp(irnXn)

Where vector r = tTS

E{exp (itTY )}
= exp(itTm)E{exp(ir1X1)... exp(irnXn)}

= exp(itTm) exp(−1

2
r2

1)... exp(−1

2
r2
n)

= exp(itTm) exp(−1

2
tTSST t)

3 Random process

3.1 Definition of random process

• Definition:A discrete random (or stochastic) process is one of the following infinite collection of
random variables

{..., X−1, X0, X1, ...} or {X0, X1, ...} or {X1, X2, ...}

Notation: {Xn}jni = {Xi, Xi+1, ..., Xj}

– Example: Random phase cosine. Let Xn = cos(2πfn + φ) where φ is a Uniform random
variable drawn from [0, 2π) To generate

{Xn}∞n=0 = {X0, X1, ...}

first sample φ and then set
Xn = cos(2πfn+ φ)

for n = 0, 1, ...

– Example: infinite collection of independent random variables
Let 0 < q < 1 and U1, U2, ... be iid discrete random variables such that

Pr(Un = 1) = q, Pr(Un = −1) = 1− q

– Example: Random walk
Generate the sequence U1, U2, ... as in the previous example and define a new random process
X0, X1... as follows: set X0 = 0 and

Xn = Xn−1 + Un
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for n > 0
We could equivalently write

Xn =

{
Xn−1 + 1 w.p.q
Xn−1 − 1 w.p.1− q

and X0 = 0.

• Definition (Finite dimensional distributions)

– To completely specify a discrete time random process X0, X1, ..., we must specify their joint
probability density function

fX0,X1,...,Xn(x0, x1, ..., xn)

for all integers n ≥ 0 when X0, X1, ... is a collection of continuous random variables

– For discrete time random process X0, X1, ..., we must specify their joint probability mass
function

pX0,X1,...,Xn(x0, x1, ..., xn)

for all integers n ≥ 0

– For any fixed n, you can treat (X0, X1, ..., Xn) as a random vector and just as in the case of
random vectors, we use their joint pdf or joint pmf to describe how the random vector should
be generated.

– For many interesting random processes, specifying pX0,X1,...,Xn(x0, x1, ..., xn is not too arduous.
One such process which underpins many real world statistical models is a Markov chain.

3.2 Markov Chain

3.2.1 Introduction and Properties

• Example
A gambler has initial wealth r bets and keep playing until wealth is R or zero. Amount bet is b
at every bet. The random process now is:

Xn+1 =


Xn ifXn ∈ {0, R} = 0
Xn + b w.p.q
Xn − b w.p.1− q

The generate Xn+1, only the value of Xn is needed and not its past values. Any discrete time
random process with this property is called a Markov process.
It can be shown that the probability of wealth doubling when q ≤ 0.5is[

1 =

(
1− q
q

)r/b]−1

b=1pound b=10pence b=1pence

q = 0.5 0.5 0.5 0.5
q = 0.49 0.40 0.02 4.3× 10−18

Table 2: Probability of doubling wealth with an initial fortune of 10 pounds.
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• Definition of Markov chain Let {Xn}n≥0 be discrete random variables taking values in S =
{1, ..., L}.

– The transition probability matrix Q is a non-negative matrix


Q1,1 Q1,2 · · · Q1,L

Q1,1 Q1,2 · · · Q1,L
...

...
. . .

...
QL,1 QL,2 · · · QL,L


and each row sums to one.

Q1,L = Pr(Xn+1 = L|Xn = 1)

from state 1 jump to state L is the probability of L given current state is L

– The conditional pmf of Xn given X0 = i0, ..., Xn−1 = in−1

Pr(Xn = in|X0 = i0, ..., Xn−1 = in−1) = Qin−1,in = Pr(Xn = in|Xn−1 = in−1)

• Example: Two state Markov chain

– For a two state Markov Chain, S = 1, 2, let.

Q =

[
1− α α
β 1− β

]
=

[
Pr(Xn+1 = 1|Xn = 1) Pr(Xn+1 = 2|Xn = 1)
Pr(Xn+1 = 1|Xn = 2) Pr(Xn+1 = 2|Xn = 2)

]
– Think of MC as an evolving sequence of random variables, generate X0, then X1, then X2

etc.

– The chain jumps between values 1 and 2 according to Q of pictorially as above.

– Assume the pmf of X0 is
pX0 = i = λi, i = 1, ..., L

λ =

 λ1
...
λL


Note that λi > 0 and

∑
λi = 1

– The definition states how X0 should be generated and then how every other Xk should.

– The process just defined is called a Markov chain. The pair (λ,Q) completely defines the
Markov Chain.

– We call Q the transition probability matrix of the MC and λ the initial distribution of the
chain.

• Limited memory property is known as Markov property: Only the most recent value Xn−1 =
in−1 is needed to generate Xn, that is we don’t need to know the values before.
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3.2.2 Further properties

1. Marginals of a Markov Chain.

• Show that pXn(in) = (λQn)in where λ is the row vector λ = (λ1, .., λL)

• The joint pmf can be expressed as

p(i0, ..., in) =
p(i0, ..., in)

p(i0, ..., in−1)

p(i0, ..., in−1)

p(i0, ..., in−2)
· · · p(i0, i1)

p(i0)
p(i0)

or
[p(i0, ..., in) = p(in|i0, ..., in−1)p(in−1|i0, ..., in−2)...p(i1|i0)p(i0).

• Thus using the Markov property,

p(i0, ..., in) = λi0Qi0,i1 ...Qin−2,in−1Qin−1,in

• Summing over all possible values for i0, ..., in−1 gives the result p(in) = (λQn)in

2. Strict stationarity

• Definition

– A discrete time random process X0, X1, ... is strictly stationary if

fX0,...,Xk(x0, ..., xk) = fXm,...,Xk+m(xm, ..., xk+m)

for all k and displacement m > 0. That is the joint pdf of (X0, ..., Xk) and (Xm, ..., Xm+k)
are the same.

– This definition apply to any discrete time process Markov or otherwise.

– Strict stationarity means any two “sections” of the process

(X0, ..., Xk) and (Xm, ..., Xm+k)

are statistically indistinguishable for any displacement m.

– If X0, X1, ... were discrete random variables then the joint pmf instead of joint pdf is
used to define strict stationarity.

• Example:

– Let Xi be the average temperature of day i. Clearly Pr(Xi ∈ A) 6= Pr(Xj ∈ A) for
some A, i.e. Xi and Xj do not have the same probability distributions, if i is a day in
summer and j a day in winter.

– But if we remove the seasonal effects to obtain {Yk = Xk − Sk}k∈I . Yk is the deviation
of the measured temperature from the anticipated seasonal value Sk. It is sensible to
assume {Yk}k∈I is stationary.

– Thus stationarity is a useful model for random deviations which is sometimes called
noise.

3. Invariant distribution of a Markov chain.

• Definition:

– When the Markov chain is initialised in a very specific way.

14



– Consider the transition probability matrix Q with state-space S. The pmf π = (πi : i ∈
S) is invariant for Q if for all j ∈ S,∑

i∈S

πiQi,j = πj.

or
πQ = π

for row vector pi

• Example:

– For a two state Markov chain, S = {1, 2}, let

Q =

[
1− α α
β 1− β

]
– Check that π = [ β

α+β
, α
α+β

] is invariant for Q or show that πQ = π,[
β

α + β
,

α

α + β

]
×
[
1− α α
β 1− β

]
=

[
β

α + β
,

α

α + β

]
– there can be many pmf π satisfies the invariant properties check that any multiple of
π = [β, α] is invariant for the Q.

4. Fact: The Markov chain (π,Q) is strictly stationary

• Verification: apply the pmf of Xn calculated before

pXn(in) =(πQn)in
=(πQ Qn−1)in
=(πQn−1)in (πQ = π)

...

=πin

• Also, the pmf of (Xm, ..., Xm+k), for any m ∈ {0, 1, ...}, can be written as

p(im, ..., im+k) = p(im+k|im, ..., im+k−1)

× P (im+k−1|im, ..., im+k−2)

...

× p(im+1|im)

× p(im)

= πimQim,im+1 · · ·Qim+k−1,im+k
,

which follows from the Markov property and invariance, i.e. p(im) = πim

• Thus the pmf of (X0, ..., Xk), setting m = 0, is

p(i0, ..., ik) = πi0Qi0,i1 ...Qik−1,ik .

• These two joint pmfs are equal, which implies strict stationarity.
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5. Fact Ergodic theorem. When the MC is irreducible then for any initial distribution λ, the sample
(or empirical) average converges to

∑
i∈S πir(i).

1

n+ 1

n∑
k=0

r(Xk)︸ ︷︷ ︸
Empirical Mean

→
∑
i∈S

πir(i).

• Definition:

– An irreducible Markov chain refers to a chain where all state values in S communicate
with each other.

– This means for any pair of states (i, j), the Markov chain starting in i will eventually
visit j and vice versa.

– We can identify communicating states by inspecting the elements of the transition prob-
ability matrix

• Example:

– The communicating sets of states for a MC with transition probability matrix

Q =



1
2

1
2

0 0 0 0
0 0 1 0 0 0
1
3

0 0 1
3

1
3

0
0 0 0 1

2
1
2

0
0 0 0 0 0 1
0 0 0 0 1 0


is {1, 2, 3}, {4} and {5, 6}. So this chain is not irreducible and the Ergodic theorem does
not hold.

– The dashed lines (arrows) indicate possible transition between states.

– The dashed loops indicate self-transitions.

– Each arrow should carry a weight equal to the probability of moving between the corre-
sponding states.

4 Time-series Analysis

4.1 Definition of a time series

A time series is a set of observations yn, n = 0, 1, ..., arranged in increasing time.

• Typically observations are recorded at regular real-time intervals, e.g. t0 + n∆ where t0 is start
time for recording observations and ∆ is the time-increment between observations.

• The nth observation is recorded at real-time t0 + n∆
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Figure 1: A time-series {y0, y1, ... }, the CO2 data. Time interval between observations ∆ = 1 month.

4.2 Workflow for time-series analysis

When faced with a novel time-series data y0, y1, ...

• Step 1: Set up a probability model to represent the data.

Yn = trend + seasonal component + residual

where

Trend mn: evolution of mean over time

Seasonal Sn: sinusoid(s) with periodicity related to the calendar

Residual Xn: zero-mean random variable (not just independent over time)

• Step 2: Estimate model parameters and check goodness of fit

• Step 3: Deploy: Simulate, forecasting,...

4.3 Estimating, or fitting, the trend

• Estimating the trend

– Assume Yn = mn + Sn +Xn where the trend is assumed to be polynomial

mn = a+ bn+ cn2

– Using the data y0, ..., yn estimate (a, b, c) via least squares:(
∂

∂a
,
∂

∂b
,
∂

∂c

) N∑
n=0

(Yn − a− bn− cn2)2 = (0, 0, 0)

– De-trended data is
Yn − m̂n = Yn − â− b̂n − ĉn2

17



Figure 2: Different fits for the data

Figure 3: De-trended data Yn − m̂n

• Biased

– Getting the trend model wrong will result in a biased estimate. Assume Yn = a + bn + Xn

where E(Xn) = 0 but we fit a constant trend Yn = m+Xn. Then

m̂ =
1

N + 1

N∑
n=0

Yn = a+
N

2
b+

1

N + 1

N∑
n=0

Xn

which is biased since E(m̂) = a + b N/2

– Example: Assume Yn = a+ bn +Xn where E(Xn) = 0. Estimate the trend with the moving
average where m̂n = (Yn−1 + Yn + Yn+1)/3 and find E(m̂n).

m̂n = a+ b(n− 1 + n+ n+ 1)/3 + (Xn−1 +Xn +Xn+1)/3

= a+ bn+ (Xn−1 +Xn +Xn+1)/3

which is unbiased. But verify this estimate is biased if the true data was Yn = a+bn+cn2+Xn.

• Fitting the seasonal term:

– Assume Sn = A cos(2πfn+ φ) where A and φ are independent random variable, 0 ≤ φ < 2π
is uniformly distributed. Note

Sn = α1 cos(2πfn) + α2 sin(2πfn)

where α1 = A cos(φ) and α2 = −A sin(φ)
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– Solve with least squares similarly

– Then, left with residuals:

Yn − m̂n − Ŝn = Yn − m̂n − α̂1 cos(2πfn)− α̂2 sin(2πfn)

Figure 4: Fitted sinusoid

Figure 5: Combined Fit

Figure 6: Final Residual

• Fitting the residual

– Plotting residuals Yn − m̂n − Ŝn, its autocorrelation, the histograms of residuals.

– Each row is a scenario you could face:

∗ Top row: independent zero mean residuals

∗ Middle row: correlated zero mean residuals

∗ Bottom row: strongly correlated zero mean residuals

– Note that all residuals have the same histograms (N (0, 1))
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5 AR and MA process

5.1 Auto-regressive (AR) process

5.1.1 Definition

• Let {Wn}∞n=−∞ be a sequence of random variables such that E(Wn) = 0 for all n,

E(WiWj) =

{
σ2 for i = j
0 for i 6= j

• The AR(p) process {Xn}∞n=−∞ is

Xn =

(
p∑
i=1

aiXn−1

)
+Wn

where a1, ..., ap are constants and p is the order of the process.

• A real time-series (data set) Xn is modelled as a function of its previous values and random part:

Xn = a1Xn−1 + ...+ apXn−p︸ ︷︷ ︸
predictable part

+ Wn︸︷︷︸
random part
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• Comparing AR(1) and AR(2), AR(2) is more “sluggish” or is more influenced by its past values.

5.1.2 AR(1) process

• For the AR(1), we write
Xn = aXn−1 +Wn

i.e. Only take into account one term before

• Expand Xn in terms of Wk, k ≤ n and compute the mean and variance:

Xn = aXn−1 +Wn

= a2Xn−2 + aWn−1 +Wn

...

=
∞∑
k=0

Wn−ka
k

Xn =
∞∑
k=0

Wn−khk

• AR(1) is causal with impulse response {hk}k≥0.

• No future Wj, j > n, terms in Xn.

• Using linearity of E{·} to get mean,

E{Xn}E

{
∞∑
k=0

Wn−ka
k

}
=
∞∑
k=0

{Wn−ka
k} = 0

since each Wn has mean zero.
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• For the variance

E{X2
n} = E


(
∞∑
k=0

Wn−ka
k

)2


= E

{(
∞∑
k=0

W 2
n−ka

2k

)
+ cross terms

}

=(a)

∞∑
k=0

E{W 2
n−k}a2k

=
∞∑
k=0

σ2a2k =(b)
σ2

1− a2

(a) Since E(WiWj) = 0 for i 6= j so cross terms have zero mean.

(b) Geometric sum converges provided |a| < 1.

5.2 Wide sense stationary (WSS)

5.2.1 Definition

{Xn}∞n=−∞ is wide-sense stationary if

• E{Xn} = µ for all n i.e.,Xn has constant mean;

• has finite variance, i.e., E{X2
n} <∞ for all n;

• E{Xn1Xn2} = E{Xn1+kXn2+k} for any n1, n2, k.

5.2.2 Correlation function

RX(k) = E{X0Xk}, k ∈ Z

• RX(k) is the correlation function of a WSS process.

• For any n2 > n1,
E{Xn1Xn2} = E{Xn1−n1Xn2−n1} = RX(n2 − n1)

• We see that E{Xn1Xn2} only depends on |n2 − n1|.

• RX(k) is an even function.

• Strict stationarity is too strong a requirement to be relevant for many application. Recall it implies
any two sections of the process,

(X0, ..., Xk)and(Xm, ..., Xk+m)

are statistically indistinguishable for any section size k and displacement m. This is an inappro-
priate model for many real-world processes.

• Wide sense stationarity is a weaker modelling restriction and useful for the analysis of time-series.
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5.2.3 Example: Random phase cosine

Let Xn = cos(2πfn + φ),we showed earlier E{Xn} = 0. Show E{Xn1Xn2} only depends on the time
difference.

E{Xn1Xn2} =

∫ 2π

0

cos(2πfn1 + φ) cos(2πfn2 + φ)
1

2π
dφ

=

∫ 2π

0

1

2
cos(2φ+ 2πf(n1 + n2))

1

2π
dφ+

∫ 2π

0

1

2
cos(2πf(n1 − n2))

1

2π
dφ

=
1

2
cos(2πf (n2 − n1)︸ ︷︷ ︸

only difference

)

• For random phase example, E{Xn1Xn2} only depends on the time difference.

• Note that RX(k) = E{X0Xk} is periodic and does not decay. (The period is the same as the
data.)

• So Xn and Xn+k remain strongly correlated even as k increases.

5.2.4 Example: AR(1) process.

We showed earlier that E{Xn} = 0 and E{X2
n} = σ2

(1−a2)
for all n.

Calculate E{Xn−kXn} for k ≥ 1 for AR(1): Xn = aXn−1 +Wn, |a| < 1.

•

E{Xn−1Xn} = E{Xn−1(aXn−1 +Wn)}
= aE{X2

n−1}+ E{Xn−1Wn}︸ ︷︷ ︸
=0

= aσ2
X

– Note E{Xn−1Wn} = 0 as no Wn term in Xn−1.

•
E{Xn−2Xn} = aE{Xn−2Xn−1}+ E{Xn−2Wn}︸ ︷︷ ︸

=0

= a2σ2
X

•
E{Xn−3Xn} = aE{Xn−3Xn−1}+ E{Xn−3Wn}︸ ︷︷ ︸

=0

= a3σ2
X

• Therefore, E{Xn−kXn} does not depend on n. Thus the AR(1) process is WSS and

RX(k) = akσ2
X

5.2.5 More on AR process

• The AR(p) process is a useful model for time-series data:

Xn = a1Xn−1 + ...+ apXn−p︸ ︷︷ ︸
predictable part

+Wnrandom part

• The AR(p) process is wide sense stationary.

• It is easy to estimate the best fitting AR(p) model for a real time-series data set using its WSS
property.
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5.3 Moving average MA(q) process.

5.3.1 Definition

• Let {Wn}∞n=−∞ be a sequence of random variables such that E(Wn) = 0 for all n,

E(WiWj) =

{
σ2 for i = j
0 for i 6= j

• The MA(q) process {Xn}∞n=−∞ is

Xn =

(
q∑
i=1

biWn−i +Wn

)

where b1, ..., bq are constants and q is the order of the process

5.3.2 Correlation of the MA(q) process

• Since {Wn}∞n=−∞ satisfies E{WnWk} = 0 when n 6= k

E{X2
n} = E


(
Wn +

q∑
i=1

biWn−i

)2


=

q∑
i=1

b2
iE{W 2

n−1}+ E{W 2
n}+ E{cross term}

= σ2(1 + b2
1 + ...+ b2

q).

• We may write

Xn =
∞∑
i=0

hiWn−i

hi = bi for 0 < i ≤ q, h0 = 1 and hi = 0 for all other i

hi =


bi if 0 < i ≤ q
1 if i = 0
0 otherwise

• Thus to compute E{Xn1Xn2}, we need to compute the correlation of the output of an LTI system
with impulse response {hk}∞k=−∞

5.3.3 Wide sense stationarity

• Fact: If the input {Wn}∞n=−∞ of a discrete time LTI system with impulse response {hn}∞n=−∞ is
WSS then its output {yn}∞n=−∞ is also WSS.

• Verification:

– Output is found by convolution: Yn =
∑∞

k=−∞ hn−kWk.
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– The mean of Yn is then:

E{Yn} =
∞∑

k=−∞

hn−kE{Wk} (linearity of expectation)

= E{W0}
∞∑

k=−∞

hn−k (constant mean property)

– and thus E{Yn} is time independent.

– The correlation is

E{Yn1Yn2} = E

{(
∞∑

k=−∞

hkWn1−k

)(
∞∑

l=−∞

hlWn1−l

)}

= E

{
∞∑

l=−∞

∞∑
k=−∞

hkhlWn1−kWn1−l

}

=
∞∑

l=−∞

∞∑
k=−∞

hkhlE{Wn1−kWn1−l}

=
∞∑

l=−∞

∞∑
k=−∞

hkhlRW (n2 − n1 + k − l)

– Which is indeed only a function of n2 − n1 Thus {Yn}n∈Z is also WSS.

– Back to the MA example, {Wn}n∈Z is WSS since E{Wn} = 0,E{WnWk} = 0 for n⊥ = k.
Thus the MA process is WSS.

6 Power Spectrum

Overview:

• The Fourier transform is an important tool for analysing deterministic signals and is equally
important for random process as well.

• A frequency domain representation is obtained by computing the Fourier transform of the corre-
lation function to yield the Power spectrum.

• As we will see, it is called the power spectrum because it gives the power of the random process
at each frequency of the spectrum.

6.1 Definition

Let RX(k) be the correlation function of a discrete time WSS process.

• The power spectrum density SX(f) is

SX(f) =
∞∑

k=−∞

RX(k)e−j2πfk
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• The inversion formula:

RX(n) =

∫ 1/2

−1/2

SX(f)ej2πfn df.

• Note that SX(f) = SX(f + n), n is integer. SX has period 1.

• SX(f) is an even function

6.2 Using the inversion as an interpretation

• We will show (by symmetry)

RX(n) = 2

∫ 1/2

−1/2

SX(f) cos(j2πfn) df

≈
k∑
i=1

1

K
SX(fi) cos(j2πfin)

By dividing [0, 1
2
] into K equal size segments, fi is the mid-point of segment i.

• We can use a sum of cosines with random phases to find a WSS random process with the same
RX(n):

Xn =
k∑
i=1

√
2SX(fi)/K cos(2πfin+ φi)

where φi ∼ U [0, 2π], each φi independent.

(a) K = 20 Cosine approximation (b) K = 1000 Cosine approximation

6.3 Example: PSD of AR(1) process.

• The AR(1) process:
Xn = aXn−1 + wn, |a| < 1

E{Xn} = 0, E{X2
n} = σ2

X =
σ2

1− a2
, RX(k) = a|k|σ2

X
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• PSD :

SX(f) = σ2
X

∞∑
k=−∞

a|k|e−j2πfk

= −σ2
X + σ2

X

0∑
k=−∞

a−ke−j2πfk + σ2
X

∞∑
k=0

ake−j2πfk

= σ2
X

(
−1 +

1

1− aej2πf
+

1

1− ae−j2πf

)
=

σ2

(1− aej2πf )(1− ae−j2πf )

=
σ2

1 + a2 − 2a cos(2πf)

Figure 7: Power spectrum of the AR(1) process
.

6.4 Property of WSS PSD

• Fact: If RX(k) is the correlation function of a discrete time WSS process then the power spec-
trum density SX(f) is an even, real valued and nonnegative function of f. Moreover, SX(f) is a
continuous function if

∑∞
k=−∞ |RX(k)| <∞.

• Verification: Use the definition of the PSD

SX(f) =
∞∑

k=−∞

RX(k)e−j2πfk

=
∞∑

k=−∞

RX(k) cos(2πfk)− j
∞∑

k=−∞

RX(k) sin(2πfk)

=
∞∑

k=−∞

RX(k) cos(2πkf)
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• NO sine terms as RX(k) is even and sin(2πfk) is odd, and summing from negative to positive
cancel out this whole odd function. Thus SX(f) is even.

SX(f) = SX(−f) and SX(f) = S∗X(f).

• Continuity follows as the weighted sum of continuous functions (note cos(2πft) is continuous) is
continuous.

6.5 PSD of an LTI system

• If the input {Wn}∞n=−∞ if a LTI system with impulse response {hn}∞n=−∞ is WSS then its output
{Yn}∞n=−∞ is also WSS.

• Relating PSD of input and output:

SY (f) = SW (f)|H(f)|2.

• Verification:

–

RY (n) = E{Y0Yn} =
∞∑

k=−∞

hk

(
∞∑

l=−∞

hlRW (n+ k − l)

)
– Inner sum is the convolution of RW and the impulse response:

∞∑
l=−∞

hlRW (n+ k − l) = g(n+ k)

– Thus:

RY (n) =
∞∑

k=−∞

hkg(n+ k) =
∞∑

k=−∞

h−kg(n− k)

– The Fourier transform is
SY (f) = H∗(f)G(f)

where

SY (f) =
∞∑

n=−∞

RY (n)e−j2πfn, H(f) =
∞∑

n=−∞

h(n)e−j2πfn, G(f) =
∞∑

n=−∞

g(n)e−j2πfn

– Thus
SY (f) = H∗(f)G(f) = H∗(f)SW (f)H(f) = SW (f)|H(f)|2

• Example:For the AR model Xn = aXn−1 +Wn, compute the PSD using the Fourier method.

– AR(1) model can be written as :

Xn =
∞∑
k=0

Wn−ka
k =

∞∑
k=0

Wn−khk.
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– SX(f) = SW (f)|H(f)|2 where

SW (f) =
∞∑

k=−∞

RW (k)e−j2πfk = σ2

Since RW (k) = 0 for k 6= 0 and RW (0) = E{W 2
n} = σ2

– Then

HX(f) =
∞∑

k=−∞

hke
−j2πfk

=
∞∑
k=0

ake−j2πfk

=

(
1

1− ae−j2πf

)
|HX(f)|2 =

1

(1− ae−j2πf )(1− aej2πf )

– Finally, using SX(f) = SW (f)|H(f)|2 = σ2|H(f)|2 we get the same answer as before.

6.6 The ARMA model

6.6.1 Definition

• Let {Wn}∞n=−∞ be a sequence of random variables with common mean 0 common variance σ2 and
E{WnWk} = 0 for n 6= k.

• The ARMA(p, q) process {Xn}∞n=−∞ is the discrete time process satisfying

Xn =

p∑
i=1

aiXn−i +Wn +

q∑
i=1

biWn−i

where ai and bj are constants.

• It can be expressed as a causal filter applied to {Wn}∞n=−∞,

Xn =
∞∑
k=0

hkWn−k.

• Fact: The ARMA(p, q) is WSS.

• Verification of WSS:

– The ARMA(p, q)model can be interpreted as an LTI system with input {Wn}∞n=−∞.

– Use the previous result that showed an LTI system preserves the WSS property.

– Since E{Wn} = 0 and E{WnWm} = 0 for m 6= n which implies WSS of {Wn}∞n=−∞, therefore
ARMA(p, q)is also WSS.
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7 Random Process revisit

7.1 Discrete-time Random Process

7.1.1 Definition

• A discrete random process is defined as an ensemble of functions

{Xn(w)}, n = −∞, ...,−1, 0, 1, ...,∞

• w is a random variable having a probability density function f(w).

• Think of a generative model for the waveforms you might observe in practice:

1. First draw a random value w̃ from the density f(w)

2. The observed waveform for this value w = w̃ is given by

Xn(w̃), n = −∞, ...,−1, 0, 1, ...,∞

3. the ‘ensemble’ is built up by considering all possible values w̃ (‘the sample space’) and their
corresponding time waveforms Xn(w̃)

4. f(w) determines the relative frequency (or probability) with which each waveform Xn(w) can
occur.

5. Where no ambiguity can occur, w is left out for notational simplicity, i.e. we refer to ‘random
process {Xn}

Figure 8: Ensemble representation of a discrete-time random process
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7.1.2 Example: the harmonic process

The harmonic process is important in a number of applications including radar, sonar, speech and audio
modelling. An example of a real-valued harmonic process is the random phase sinusoid.

• Sine-waves of known amplitude a and frequency w0.

• Phase, unknown and random

• Random phase correspond to an unknown delay in a system for example.

• This random process could be expressed in:

Xn = a sin(nw0 + Φ) with fixed constant a and w0 and random variable Φ

• Random variable Φ has a uniform probability distribution over the range −π to +π:

f(φ) =

{
1/(2π) −π < φ < +π
0, otherwise

Figure 9: Some members of the random phase sine ensemble

7.2 Correlation functions

7.2.1 Autocorrelation function

• The mean of a random process Xn is - E{Xn}

• The Autocorrelation function of process {Xn} is

rxx[n,m] = E[XnXm]

7.2.2 Cross-Correlation function

• The Cross-correlation function between two processes {Xn} and {Yn} is:

rxy[n,m] = E[XnYm]
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7.3 Stationarity

7.3.1 Strict-Sense Stationary

• A stationary process has the same statistical characteristics irrespective of shifts along the time
axis.

– An observer looking at the process from sampling time n1 would not be able to tell the
difference in the statistical characteristics of the process if the time moved to n2

– Could be formalised by considering the Nth order density function for the process:

fXn1 ,Xn2 ,...,XnN (xn1 , xn2 , ..., xnN )

i.e., the joint probability density function forN arbitrarily chosen time indices {n1, n2, ..., nN}.
– Since the probability distribution of a random vector contains all the statistical information

about that random vector, we should expect the probability distribution to be unchanged if
we shifted the time axis any amount to the left or the right, for a stationary signal

• A random process is strict-sense stationary if, for any finite c,N and {n1, n2, ..., nN}:

fXn1 ,Xn2 ,...,XnN (α1, ..., αN) = fXn1+c,Xn2+c,...,XnN+c(α1, ..., αN)

• Strict-sense stationarity is hard to prove for most systems. In this course, a less stringent condition
is used, wide-sense stationarity, which only requires first and second moments(i.e. mean and
autocorrelation function) to be invariant to time shifts.

7.3.2 Wide-sense Stationary

A random process is wide-sense stationary(WSS) if:

1. µn = E[Xn] = µ (Constant mean)

2. rxx[n,m] = rxx[n+ k,m+ k] (Autocorrelation only depends on the difference)

3. Finite variance: E[(Xn − µ)2] <∞

Note that strict-sense stationarity plus finite variance implies wide-sense stationarity, but not vice versa.

7.3.3 Example: the harmonic process continued

1. Mean:

E[Xn] =E[a sin(nw0 + Φ)]

=a{E[sin(nw0) cos(Φ) + cos(nw0) sin(Φ)]}
=a{sin(nw0)E[cos(Φ)] + cos(nw0)E[sin(Φ)]}
=0

since E[cos(Φ)] = E[sin(Φ)] = 0 under the assumed uniform pdf f(φ).
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2. Autocorrelation:

rXX [n,m] =E[XnXm]

=E[a sin(nw0 + Φ) · a sin(mw0 + Φ)]

=0.5a2{E[cos[(n−m)w0]− cos[(n+m)w0 + 2Φ]]}
=0.5a2{cos[(n−m)w0]− E[cos[n+m]w0 + 2Φ]}

= 0.5a2 cos[(n−m)w0]

3. To verify finite variance, just set m = n in the autocorrelation function. Therefore, the harmonic
process satisfy all three conditions and is WSS.

7.4 Power Spectra

7.4.1 Definition

• For a wide-sense stationary random process {Xn}, the power spectrum is defined as the discrete-
time Fourier transform (DTFT) of the autocorrelation function:

SX(ejΩ) =
∞∑

m=−∞

rxx[m]e−jmΩ

where Ω = ωT , the normalised frequency, in radians per sample is used for convenience.

• T is the sampling interval of the discrete time process and therefore Ω = 2π corresponds to the
sampling frequency ω = 2π/T rad/s

• The definition here is slightly different compared to the before. When we write the PSD in a
function of ejΩ. The period becomes 2π

7.4.2 Inverse formula for PSD

• The autocorrelation function can thus be found from the power spectrum by inverting the trans-
form using the inverse DTFT:

rxx[m] =
1

2π

∫ π

−π
SX(ejΩ)ejmΩ dΩ

7.4.3 Properties

• The power spectrum is a real, positive, even and periodic function of frequency.

• The power spectrum can be interpreted as a density spectrum in the sense that the mean-squared
signal value at the output of an ideal band-pass filter with lower and upper cut-off frequencies ωl
and ωu is given by

1

π

∫ ωuT

ωlT

SX(ejΩ) dΩ
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7.4.4 Example: random phase sine-wave

• The autocorrelation function is obtained as:

rxx[m] = 0.5a2 cos[mωo]

• Hence the power spectrum is obtained as:

SX(ejΩ) =
∞∑

m=−∞

rxx[m]e−jmΩ

=
∞∑

m=−∞

0.5a2 cos[mω0]e−jmΩ

=0.25a2 ×
∞∑

m=−∞

(ejmω0 + e−jmω0)e−jmΩ

=0.5πa2 ×
∞∑

m=−∞

δ(Ω− ω0 − 2mπ) + δ(Ω + ω0 − 2mπ)

where Normalised frequency Ω = ωT is used for shorthand

• The last line above is obtained from the Fourier series of a periodic train of δ functions

∞∑
m=−∞

δ(t+ t0 − 2mπ) =
1

2π

∞∑
m=−∞

exp(−jmt0) exp(+jmt)

• Alternatively (and equivalently) just take the inverse DTFT of the delta function to check the
result:

1

2π

∫ π

−π
δ(Ω + ω0 − 2mπ)ejnΩ dΩ =

1

2π
ejnω0

Figure 10: Power spectrum of harmonic process - Ω0 = ω0 in this plot

7.5 White Noise

7.5.1 Definition

• White noise is defined in terms of its auto-covariance function. A wide sense stationary process is
termed white noise if:

rxx[m] = E[(Xn − µ)(Xn+m − µ)] = σ2
Xδ[m]
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where δ[m] is the discrete impulse function:

δ[m] =

{
1, m = 0
0, otherwise

σ2
X = E[(Xn − µ)2] is the variance of the process.

• If µ = 0 then σ2
X is the mean-squared value of the process, which will refer to as the ‘power’.

• The power spectrum of zero mean white noise is:

SX(ejωT ) =
∞∑

m=−∞

rxx[m]e−jmΩ = σ2
X

i.e., flat across all frequencies.

7.5.2 Example: White Gaussian noise (WGN)

• The values Xn are drawn independently from a Gaussian distribution with mean 0 and variance
σ2
X .

• The Nth order pdf for the Gaussian white noise process is:

fXn1,Xn2,...,XnN (α1, α2, ..., αN) =
N∏
i=1

N (αi|0, σ2
X)

where

N (α|µ, σ2) =
1√

2πσ2
exp

(
− 1

2σ2
(α− µ)2

)
is the univariate normal pdf.

• The Gaussian white noise process is Strict sense stationary, since:

fXn1,Xn2,...,XnN (α1, α2, ..., αN) =
N∏
i=1

N (αi|0, σ2
X) = fXn1+c,Xn2+c,...,XnN+c(α1, α2, ..., αN)

7.6 Linear systems and random process

7.7 Properties

7.7.1 Wide-sense Stationarity

When a wide-sense stationary discrete random process {Xn} is passed through a stable, linear time
invariant (LTI) system with digital impulse response {hn}, the output process {Yn}, i.e.

yn =
∞∑

k=−∞

hkxn−k = Xn ∗ hn

is also Wide-sense stationary
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7.7.2 Correlation function

We can express the output correlation functions and power spectra in terms of the input statistics and
the LTI system:

rxy[k] = E[XnYn+k] =
∞∑

l=−∞

hlrXX [k − l] = hk ∗ rXX [k]

ryy[l] = E[YnYn+l] =
∞∑

k=−∞

∞∑
i=−∞

hkhirxx[l + i− k] = hl ∗ h−l ∗ rXX [l] (1)

Figure 11: Correlation functions with convolution

7.7.3 Power spectrum

Power spectrum is found by converting this result to the frequency domain by taking DTFT of both
sides of Eq. 1:

SY (ejωT ) = |H(ejωT )|2SX(ejωT ) (2)

Here H(ejωT =
∑∞

n=−∞ hn exp−jnωT is the frequency response of the system.

7.7.4 Example: Filtering white noise

• Suppose we filter a zero mean white noise process {Xn} with a first order finite impulse response
(FIR) filter:

yn =
1∑

m=0

bmXn−m, or Y (z) = (b0 + b1z
−1)X(z)

with b0 = 1, b1 = 0.9. This is a moving average process

1. The impulse response of this causal filter is:

{hn} = {b0, b1, 0, 0...}

2. The autocorrelation function of {Yn} is obtained as:

rY Y [l] = E[YnYn+l] = hl ∗ h−l ∗ rXX [l]

3. This convolution can be performed directly. However, it its more straightforward in the frequency
domain.

4. The frequency response of the filter is:

H(ejΩ) = b0 + b1e
−jΩ

5. The power spectrum of {Xn} (white noise) is:

SX(ejΩ) = σ2
X
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6. Hence the power spectrum of {Yn} is:

SY (ejΩ) = |H(ejΩ)|2SX(ejΩ)

= |b0 + b1e
−jΩ|2σ2

X

= (b0b1e
jΩ + (b2

0 + b2
1) + b0b1e

−jΩ)σ2
X

7. Comparing this expression with the DTFT of ryy[m]:

SY (ejΩ) =
∞∑

m=−∞

ryy[m]e−jmΩ

we can identify non-zero terms in the summations only when m = −1, 0,+1 as follows:

rY Y [−1] = σ2
Xb0b1, rY Y [0] = σ2

X(b2
0 + b2

1), rY Y [1] = σ2
Xb0b1

7.8 Ergodic Random process

7.8.1 Why ergodic

In practical signal processing systems, correlation function or power spectra may not be known in
advance. How could we estimate these for a WSS process? If the process is ergodic, then easy methods
exists.

7.8.2 Definition of Mean and Correlation ergodic

If we measure a realisation {xn} (i.e. one waveform from the ensemble of possible waveforms) of the
process {Xn} for some long (ideally infinite) period of time, we can use this to estimate means and
correlation functions as follows:

• For an Ergodic random process we can estimate expectations by performing time-averaging on
a single sample function, e.g.

µ = E[Xn] = lim
N→∞

1

N

N−1∑
n=0

xn Mean ergodic

rxx[k] = lim
N→∞

1

N

N−1∑
n=0

xnxn+k Correlation ergodic

• These formulae allow us to make estimation for ‘sufficiently’ large N :

µ = E[Xn] ≈ 1

N

N−1∑
n=0

xn

rxx[k] ≈ 1

N

N−1∑
n=0

xnxn+k

Clearly, larger N better estimation
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7.8.3 When ergodic?

• It is hard in general to determine whether a given process is ergodic

• However, a necessary and sufficient condition for mean ergodicity is given by:

lim
N→∞

1

N

N−1∑
k=0

cXX [k] = 0

where cXX is the autocovariance function:

cXX [k] = E[(Xn − µ)(Xn+k − µ)]

and µ = E[Xn]

• A simpler sufficient condition for mean ergodicity is that CXX [0] <∞ and

lim
N→∞

cXX [N ] = 0

• The logic of sufficient and necessary is that if we can prove the sufficient condition, that guarantees
mean ergodicity.

• However, if we can not prove it (the sufficient), or it turns out to be false, we don’t know for sure
whether the process is ergodic.

• For necessary and sufficient condition, if we can prove that, then definitely ergodic. If we prove
the condition is false, then the process is definitely not ergodic.

• Correlation ergodicity can be studied by extensions of the above theorems. Not examinable.

• Unless otherwise stated, we will always assume that the signals we encounter are both wide-sense
stationary and ergodic.

7.8.4 Example 1

For measurement of the voltages of different battery cells, the population of batteries has a mean value
9V and standard deviation 0.1V and the population is believed to be Gaussian.The voltage across one
randomly selected battery cell is measured for a time interval of N samples. It is intuitively obvious
that we can’t estimate the mean value of the population from this one set of N time measurements, but
let’s prove it:

1. Consider the ‘d.c. level’ random process:

Xn = A

where A is a random variable having the standard Gaussian distribution

f(A = a) = N (a|9, 0.01)

2. The mean of the random is:

E[Xn] =

∫ ∞
−∞

xn(a)f(a) da =

∫ ∞
−∞

af(a) da = 9
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3. Now consider a random sample function measured from the ranodm process, say

xn = a0

4. The ‘ergodic’ average value of this particular sample function is

1/N
N−1∑
n=0

a0 = a0

whatever signal duration N we have available.

5. Since in general a0 6= E[A] = 9, the process is clearly not mean ergodic, but could we have checked
this using the mean ergodicity theorems?

6. Check this using the mean ergodic theorem. The autocovariance function is:

cXX [k] = E[(Xn − µ)(Xn+k − µ)]

= E[(Xn − 9)(Xn+k − 9)] = E[A2 − 92] = var(A) = 0.01

7. Now

lim
N→∞

1

N

N−1∑
k=0

cXX [k] = 0.01×N/N = 0.01 6= 0

8. Hence the theorem confirms our finding that the process is not ergodic in mean

9. While this example highlights a possible pitfall in assuming ergodicity, most of the processes we
deal with will, however, be ergodic.

7.8.5 Ergodic example: MA process

• The autocorrelation function for the zero mean MA process as

rY Y [−1] = σ2
Xb0b1, rY Y [0] = σ2

X(b2
0 + b2

1), rY Y [1] = σ2
Xb0b1

and zero for all other lags.

• Since it is zero mean, the autocovariance function equals autocorrelation function rY Y . Hence we
can use either the necessary or sufficient condition to show mean ergodicity.

– Sufficient condition:
lim
N→∞

CY Y [N ] = 0

– Necessary condition:

lim
N→∞

1

N

N−1∑
k=0

cY Y [k] = lim
N→∞

1

N
(σ2

Xb0b1 + σ2
X(b2

0 + b2
1) + σ2

Xb0b1) = 0
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8 Optimal Filtering Theory - Wiener Filters

8.1 Overview

• Optimal filtering is an area in which we design filters that are optimally adapted to the statistical
characteristics of a random process.

• Combination of standard filter design for deterministic signals with the random process theory.

• Pioneered in 1940’s by Norbert Wiener who designed methods for optimal estimation of a signal
measured in noise

• A desired signal dn is observed in noise vn:

xn = dn + vn

• Wiener showed how to design a linear filter which would optimally estimate dn given just the
noisy observations xn and some assumptions about the statistics of the random signal and noise
processes. This class of filters the wiener filter, forms the basis of many fundamental signal
processing applications.

• Typical applications include:

– Noise reduction e.g. speech and music signals

– Predication of future values of a signal, e.g. in finance

– Noise cancellation, e.g. for aircraft cockpit noise

– Deconvolution, e.g. removal of room acoustics (dereverberation) or echo cancellation in
telephony

• The Wiener filter is a very powerful tool. However, it is only the optimal linear estimator for
stationary signals. The Kalman filter offers an extension for non-stationary signals via state space
models. In cases where a linear filter is still not good enough, non-linear filtering techniques can
be adopted. (Non-examinable)

8.2 General filters

• The observed signal xn can be filtered with an infinite dimensional filter, having a non-causal
impulse response hp:

{hp; p = −∞, ...,−1, 0, 1, ...,∞}

• An estimate (̂d)n of the desired signal can be obtained by filtering the noisy signal using the filter
{hp}:

d̂n =
∞∑

p=−∞

hpXn−p

• Since both dn and xn are drawn from random processes {dn} and {xn}, performance can only be
measured in terms of expectations. The criterion used for Wiener filtering is the mean-squared
error (MSE). First, form the error signal εn:

εn = dn − d̂n = dn −
∞∑

p=−∞

hpXn−p
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The mean-squared error (MSE) is then defined as:

J = E[ε2n] (3)

where the expectation is w.r.t the random signal d and the random noise v.

• The wiener filter minimises J w.r.t the filter coefficient {hp}

8.3 Derivation of Wiener filter

8.3.1 Assumption

• The Wiener filter assumes that {xn} and {dn} are jointly wide-sense stationary.

– Both means are constant

– All autocorrelation and cross-correlation functions depend only on the time difference between
data points.

• Assume {dn} and {vn} have zero mean

E[dn] = 0 E[vn] = 0

Non-zero mean processes can be dealt with by first subtracting the mean before filtering.

8.3.2 Derivation

1. The expected error in Eq. 3 may be minimised w.r.t the impulse response values {hq}. A sufficient
condition for a minimum is:

∂J

∂hq
=
∂E[ε2n]

∂hq
= E

[
∂ε2n
∂hq

]
= E

[
2εn

∂εn
∂hq

]
= 0

simultaneously for all q ∈ {−∞, ...,−1, 0, 1, ...,∞}.

2. The term ∂εn
∂hq

is then calculated as:

∂εn
∂hq

=
∂

∂hq

{
dn −

∞∑
p=−∞

hpxn−p

}
= −xn−q

since dn and Xn−p do not depend on hp and are treated as constant in the partial derivative.

3. Hence the coefficient must satisfy, for all q:

E
[
εn
∂εn
∂hq

]
= −E[εnxn−q] = 0

i.e.
E[εnxn−q] = 0; −∞ < q <∞ (4)

This is known as the orthogonality principle, two random variables X and Y are termed orthogonal
if

E[XY ] = 0
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4. Substituting for εn in E.q. 4:

E[εnxn−q] = E

[(
dn −

∞∑
p=−∞

hpxn−p

)
xn−q

]

= E[dnxn−q]−
∞∑

p=−∞

hpE[xn−qxn−q]

=(a) rxd[q]−
∞∑

p=−∞

hprxx[q − p] = 0

(a) since E[dnxn−q] = rdx[−q] = rxd[q]

5. Rearranging, the solution must satisfy
∞∑

p=−∞

hprxx[q − p] = rxd[q], −∞ < q +∞ (5)

Eq. 5 is the Wiener-Hopf equations, which involve an infinite number of unknowns hq. The
simplest way to solve this is in the frequency domain.

6. Rewrite the Wiener-Hopf equations as a discrete-time convolution:

hq ∗ rxx[q] = rxd[q], −∞ < q < +∞

7. Taking DTFT of both sides:
H(ejΩ)Sx(e

jΩ) = Sxd(e
jΩ)

where Sxd(e
jΩ) is defined as the DTFT of rxd[q] and is termed the cross-power spectrum of d and

x.

• The cross-power spectrum is in general complex valued and measures the coherence between
two process at particular frequency.

• It has the property:
Sxd(e

jΩ) = Sdx(e
j|Ω)∗

8. Rearranging:

H(ejΩ) =
Sxd(e

jΩ)

Sx(ejΩ)
(6)

8.3.3 Results

• Result E.q 6 tells us that the frequency response of the optimal filter for estimating d can be com-
puted given knowledge of just the power spectrum (or equivalently the autocorrelation function)
of the noisy signal x, and the cross power spectrum (or equivalently the cross-correlation function)
between the noisy signal x and the desired signal d.

• Depending on scenario, it may be possible to estimate these quantities directly from data, and/or
from physical modelling considerations about the system.

• Estimation from data will typically require the process to be ergodic, hence time averages converge
to ensemble averages of correlation functions.

• This result in general yields a non-causal filter that is not implementable in practice. The
practical approach is either to approximate the filtering in the frequency domain using DFTs, or
derive sub-classes of Wiener filter that are casual and implementable, as considered shortly.
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8.4 Mean-squared error for the Optimal filter

• E.q 6 show how to calculate the optimal filter for a given problem.

• However, have not given the performance of that optimal filter.

• This can be assessed from the mean-squared error value of the optimal filter:

J = E[ε2n] = E[εn(dn −
∞∑

p=−∞

hpxn−p)

= E[εndn]−
∞∑

p=−∞

hpE [εnxn−p]︸ ︷︷ ︸
(a)

(a): =0 at optimal from E.q 4

• Thus, the minimum error is:

Jmin = E[εndn]

= E[(dn −
∞∑

p=−∞

hpxn−p)dn]

= rdd[0]−
∞∑

p=−∞

hprxd[p]

Steps to find the minimum error

1. Compute the autocorrelation function for the error signal

rεε[k] = E[εnεn+k] = E

[
(dn −

∞∑
p1=−∞

hp1xn−p1)(dn+k −
∞∑

p2=−∞

hp2xn+k−p2)

]
= E

{
dndn+k − dn

∑
hp2xn+k−p2 − dn+k

∑
hp1xn−p1 +

∑∑
hp1hp2xn−p1xn+k−p2

}
= rdd[k]− E

{∑
hprdx[n+ k − p− n]−

∑
hprdx[n− p− n− k]−

∑∑
rxx[k − p2 + p1]

}
= rdd[k]− E

{∑
hprdx[k − p]−

∑
hprxdk + p]−

∑∑
rxx[k − p2 + p1]

}
= rdd[k]− hp ∗ rdx[k]− h∗p ∗ rxd[k] + hp ∗ h∗p ∗ rxx[k]

2. Take its DTFT to get the power spectrum of the error signal

Sε(e
jΩ) = SD − SDX ·H − SXD ·H∗ + SX · |H|2
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3. By taking the Inverse DTFT and put in H = Hopt to get the power of minimum of the error

Jmin = E[ε2n] = rεε[m = 0]

=
1

2π

∫ π

−π
Sε(e

jΩ)ejmΩ dΩ

=
1

2π

∫ π

−π
Sε(e

jΩ) dΩ

=
1

2π

∫ π

−π
SD − SDX ·H − SXD ·H∗ + SX · |H|2 dΩ

=
1

2π

∫ π

−π
SD − SDX ·

SXD
SX
−H · SX ·H∗ + SX · |H|2 dΩ

=
1

2π

∫ π

−π
SD − SDX ·

SXD
SX

dΩ

=
1

2π

∫ π

−π
SD(ejΩ)− S∗XD ·H(ejΩ) dΩ

Since Hopt = SXD
SX

and SXD = S∗DX

8.5 Special Case: Uncorrelated Signal and Noise Process

• An important sub-class of the Wiener filter can be gained by considering the case where the desired
signal process {dn} is uncorrelated with the noise process {vn}, i.e.

rdv[k] = E[dvvn+k] = 0, −∞ < k∞

• This is a typical scenario in which v might be environmental noise that is independent of the
desired signal and hence uncorrelated.

• One side concept: random variables that are independent and zero mean are uncorrelated; however,
uncorrelated random zero mean random variables are not assured to be independent. (Independent
stronger than correlation)

• In the Wiener-Hopf equations:

∞∑
p=−∞

hprxx[q − p] = rxd[q], −∞ < q +∞

1. rxd.

rxd[q] = E[xndn+q]

= E[(dn + vn)dn+q]

= E[dndn+q] + E[vndn+q]︸ ︷︷ ︸
=0

= E[dndn+q]

Taking DTFT:
Sxd(e

jΩ) = Sd(e
jΩ)
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2. rXX .

rXX [q] = E[xnxn+q]

= E[(dn + vn)(dn+q + vn+q)]

= E[dndn+q] + E[dnvn+q] + E[vndn+q] + E[vnvn+q]

= rdd[q] + rvv[q]

Taking DTFT:
Sx(e

jΩ) = Sd(e
jΩ) + Sv(e

jΩ)

3. Thus the Wiener filter becomes

H(ejΩ) =
Sxd
Sx

=
Sd(e

jΩ)

Sd(ejΩ) + Sv(ejΩ)
=

1

1 + 1/ρ(Ω)
(7)

where ρ(Ω) = Sd(e
jΩ/Sv(e

jΩ is the signal-to-noise (SNR) power ratio.

• From E.q 7 the behaviour of the filter is intuitively reasonable:

– The gain is always non-negative, and ranges between 0 and 1. Hence the filter will never
boost a particular frequency component; rather it acts as an optimal attenuation rule.

– At those frequencies where the SNR is large, the gain of the filter tends to unity; whereas the
gain tends to a small value at those frequencies where the SNR is small. Essentially, when
the signal is very noisy, the best estimate the filter can make in a MSE sense is zero.

• The minimum expected error in this case:

Jmin =
1

2π

∫ π

−π
SD(ejΩ)− S∗XD ·H(ejΩ) dΩ

=
1

2π

∫ π

−π
SD(ejΩ)− SD ·H(ejΩ) dΩ

=
1

2π

∫ π

−π
SD(ejΩ)

(
1− Sd(e

jΩ)

Sd(ejΩ) + Sv(ejΩ)

)
dΩ

=
1

2π

∫ π

−π
SD(ejΩ)

(
1− 1

1 + 1/ρ(Ω)

)
dΩ

=
1

2π

∫ π

−π
SD(ejΩ)

(
1

1 + ρ(Ω)

)
dΩ

in which error tends to the power spectrum of {dn} when SNR is poor and tends to zero when
SNR is good at a particular frequency.

8.6 Example:AR process

Problem Setting:

• An autoregressive process {dn} of order 1 is generated as:

dn = a1dn−1 + en

with en as zero mean, variance σ2
e white noise

45



• Rewrite in z-transform domain and zero initial conditions:

D(z) = a1z
−1D(z) + E(z)

hence

D(Z) =
E(z)

1− a1z−1
= H(z)E(z)

where H(z) = 1
1−a1z−1 is a transfer function between e and d.

• The frequency response is thus:

H(ejΩ) =
1

1− a1exp−jΩ

• Power spectrum is then obtained from the linear systems result

Sd(e
jΩ) = |H(ejΩ)|2Se(ejΩ) =

σ2
e

(1− a1exp−jΩ)(1− a1exp+jΩ)

• Suppose the process is observed in zero mean white noise with variance σ2
v and is uncorrelated

with {dn}:
xn = dn + vn

• Design the Wiener filter for estimation of dn.

Solution:

1. Use the uncorrelated frequency response formula:

Hopt(ejΩ) =
Sd

Sd + Sv

=

σ2
e

(1− a1e−jΩ)(1− a1e+jΩ)

σ2
e

(1− a1e−jΩ)(1− a1e+jΩ)
+ σ2

v

=
σ2
e

σ2
e + σ2

v(1− a1e−jΩ)(1− a1e+jΩ)

2. Inverse DTFT is applied to find the impulse response of the filter

8.7 FIR Wiener filter

• In the previous part, the filter is non-causal. The impulse response hp is defined for values of p
less than 0.

• Here a practical alternative in which a causal P th order Finite Impulse Response Wiener filter is
developed.

• In the FIR case the signal estimate is:

d̂n =
P∑
p=0

hpXn−p

and we minimise, as before the MSE:

J = E[(dn − d̂n)2]
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8.7.1 Derivation of the FIR filter

• The filter derivation proceeds much as before, and we need to solve

∂J

∂hq
= E

[
2εn

∂εn
∂hq

]
= 0, for q = 0, 1, ...P.

• Then, as before:

∂εn
∂hq

=
∂

∂hq

{
dn −

P∑
p=0

hpxn−p

}
= −xn−q

leading to the orthogonality principle:

E[εnxn−q] = 0; q = 0, .., P

and Wiener-Hopf equations as follows:

P∑
p=0

hprxx[q − p] = rxd[q], q = 0, 1, ..., P

• This is a simple finite set of simultaneous equations that we can solve in the time domain. The
equations may be written in matrix form as:

Rxh = rxd

where:

h =


h0

h1
...
hP

 rxd =


rxd[0]
rxd[1]

...
rxd[P ]


and

RX =


rxx[0] rxx[1] . . . rxx[P ]
rxx[1] rxx[0] . . . rxx[P − 1]

...
...

. . .
...

rxx[P ] rxx[P − 1] . . . rxx[0]


Rx is known as the correlation matrix.

• Note that rxx[k] = rxx[−k] so that the correlation matrix Rx is symmetric and has constant
diagonals (a symmetric Toeplitz matrix)

• The coefficient vector can be found by matrix inversion:

h = R−1
X rxd

• For finding the impulse response of the FIR filter, we need to have a-priori knowledge of the
autocorrelation matrix Rx and the cross-correlation rxd
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• The minimum mean-square error is given by:

Jmin =E[εndn]

=E[(dn

P∑
p=0

hpxn−p)dn]

=rdd[0]−
P∑
p=0

hprxd[p]

=rdd[0]− rTxdh
=rdd[0]− rTxdR−1

x rxd

8.8 Case study: audio noise reduction

8.8.1 Overview and assumptions

• Consider a section of acoustic waveform dn that is corrupted by additive noise vn

xn = dn + vn

dn: Clean audio signal xn: Noisy audio signal

• Implement FIR Wiener filter to reduce the noise in the signal.

• Assume that the section of data is wide-sense stationary and ergodic (approx. true for a short
segment around 1/40 s).

• Assume also that the noise is white and uncorrelated with the audio signal and have variance σ2
v

i.e.
rvv[k] = σ2

vδ[k]

8.8.2 Wiener filter

• The wiener filter in this case needs

– rxx[k], Autocorrelation of noisy signal
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– rxd[k] = rdd[k], Autocorrelation of desired signal

• Since signal is assumed ergodic, these quantities can be estimated:

rxx[k] ≈ 1

N

N−1∑
n=0

xnXn+k

rdd[k] = rxx[k]− rvv[k] =

{
rxx[k], k 6= 0
rxx[0]− σ2

v , k = 0

• Under what conditions would rdd[k] form a valid autocorrelation sequence for construction of Rx?

– A necessary condition is that the resulting Rx matrix is non-negative definite.

– Definition of non-negative definiteness :

aTRxa ≥ 0

for any length P + 1 vector a.

– Now, form the vector xn = [Xn, Xn−1...Xn−P ]T .

– Take now the non-negative quantity:

(aTXn)2 = (aTXn)(XT
n a) = aT (xnX

T
n )a

– The (i, j)th element of xnX
T
n is xn−i+1xn−j+1 and E[xn−i+1xn−j+1] = rxx[i − j]. Hence

E[xnx
T
n ] = Rx

– Now take the expectation of the non-negative quantity which itseld will therefore be non-
neagtive:

E[(aTXn)2] = aTE[(xnX
T
n )]a = aTRxa ≥ 0

and hence the correlation matrix of any vector xn must be non-negative definite.

• Choose the filter length P , form the autocorrelation matrix and cross-correlation vector and solve
in Matlab:

h = R−1
x rxd

• The output looks like this with P = 350
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• The theoretical MSE is calculated as:

Jmin = rdd[0]− rTxdh

• This can be computed for various filter lengths, and in this artificial scenario we can compare the
theoretical error performance with the actual MSE, since we have access to the true dn itself:

Jtrue =
1

N

N−1∑
n=0

(dn − d̂n)2

Not necessarily equal to the theoretical value since we estimated the autocorrelation functions
from finite pieces of data and assumed stationarity of the processes.

8.9 Extending the Wiener filter

• The Wiener Filter can readily be extended to deal with cases outside the regular noise reduction
case. You could replace the desired signal d with whatever one wants to predict or estimate and
then rederive the new version of the filter.

• Generally, for the FIR case the formula

h = R−1
x rxd

applies to whatever the form of the desired signal and the ‘noisy’ signal, provided you can calculate
the necessary correlation functions.

• The theory for non-standard cases will be examinable.

• Examples are:

1. Prediction of a noisy signal {un}. The model for the noisy signal is as before:

xn = un + vn

but now we define the desired signal to be the predicted value of the signal, dn = un+p, where
p is the desired prediction interval. The FIR Wiener estimate takes the same form as before:

d̂n =
P∑
p=0

hpxn−p

the error is εn = dn − d̂n just as before

2. Smoothing of a noisy signal. In this case we use the current samples to get an even better
estimate of the signal at some point in the past. The setup is exactly the same as for
prediction, except that dn = un−p where p is the amount of ‘lookahead’ that we can allow.
This would be appropriate in systems where a certain time-lag or or latency is allowable
before the signal estimate needs to be obtained.

3. Deconvolution. To extract a signal un from a noisy convolved version of itself:

xn

Q∑
q=0

hqun−q + vn

The setup is the same as for the regular filter, setting dn = un, but we will have a more
complex expression for the autocorrelation function of xn and the cross-correlation between
d and x. One example is the removal of room acoustics from a voice signal un.
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9 Optimal Detection - Matched Filter

9.1 What is Matched Filter

• The Wiener filter shows how to extract a random signal from a random noise environment.

• How about detecting a known deterministic signal sn, n = 0, ..., N − 1, buried in random noise vn:

xn = sn + vn

for example:

• The method is Matched filter

• It finds extensive application in detection of pulses in communications data, radar and sonar data

9.2 Formulate the problem

• First ‘vectorise’ the equation:
x = s+ v

s = [s0, s1, ..., sN−1]T , x = [x0, x1, ..., xN−1]T

• Once again, we will design an optimal FIR filter for performing the detection task. Suppose the
filter has coefficients hm, for m = 0, 1, ..., N − 1, then the output of the filter at time N − 1 is:

yN−1 =
N−1∑
m=0

hmxN−1−m

= hT x̃

= hT (s̃+ ṽ)

= hT s̃+ hT ṽ

= ysN−1 + ynN−1

where x̃ = [xN−1, XN−2, ..., x0]T is the ‘time-reversed’ vector. ysN−1 is defined as the output from
the signal-only part and ynN−1 is the output from just the noise going through the filter.
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• Instead of minimising the MSE, we maximise the signal-to-noise ratio (SNR) at the output of the
filter, hence giving best possible chance of detecting the signal sn.

• Define output SNR as:
E[|ysN−1|2]

E[|ynN−1|2]
=

E[|hT s̃|2]

E[|hT ṽ|2]
=
|hT s̃|2

E[|hT ṽ|2]

since numerator is not a random quantity and only the noise (v) part is random.

9.3 Signal output energy

• The signal component at the output is ysN−1 = hT s̃, with energy

|hT s̃|2 = (hT s̃)(s̃Th) = hT (s̃s̃T )h

• To analyse this, consider the matrix M = s̃s̃T . What are its eigenvectors/eigenvalues ?

– Recall the definition of eigenvectors (e) and eigenvalues (λ):

Me = λe

• Try e = s̃:
Ms̃ = (s̃s̃T )s̃ = s̃(s̃T s̃) = (s̃T s̃)s̃

Hence the unit length vector e0 = s̃/|s̃| is an eigenvector and λ = (s̃T s̃)isthecorresponding

• Now consider any vector e′ which is orthogonal to e0 (i.e. s̃T e′ = 0):

Me′ = s̃s̃T = 0

– Hence e′ is also an eigenvector, but with eigenvalue λ′ = 0.

– Since we can construct a set of N−1 orthonormal (unit length and orthogonal to each other)
vectors which are orthogonal to s̃, call these e1, e2, ..., eN−1, we have now discovered all N
eigenvectors/eigenvalues of M.

• Since the N eigenvectors form an orthonormal basis, we may represent any filter coefficient vector
h as a linear combination of these:

h = αe0 + βe1 + γe2 + ...+ ...eN−1

• Thus we can express

Mh = M(αe0 + βe1 + ...+ ...eN−1)

= αMe0 + ...+ ...MeN−1

= α(s̃T s̃)e0 + 0 + 0 + 0 + ...+ 0

= α(s̃T s̃)e0

since all but the first eigenvalue is zero.
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• Now, consider the signal output energy again:

hT s̃s̃Th = hTMh

= hTα(s̃T s̃)e0

= α(s̃T s̃)hT e0

= (αs̃T s̃)(αe0 + βe1 + ...+ ...eN−1)T e0

= αs̃T s̃

since eT0 ej = δ[j] (eigenvectors are othonormal).

9.4 Noise output energy

• Now consider the expected noise output energy, which may be simplified as follows:

E[|hT ṽ|2] = E[hT ṽṽTh] = hTE[ṽṽT ]h

• Consider the case where the noise is white and zero mean with variance σ2
v . Then, for any time

indexes i = 0, .., N − 1 and j = 0, ..., N − 1:

E[vivj] =

{
σ2
v , i = j

0, i 6= j

and hence
E[ṽṽT ] = σ2

vI

where I is the N × N identity matrix, as the diagonal elements are those ‘i = j’ terms and the
off-diagonal are ‘i 6= j’ terms.

• So we have the expression for the noise output

E[|hT ṽ|2] = σ2
vIh

Th

and expending h in terms of the eigenvectors of M:

σ2
vIh

Th = σ2
v(α

2 + β2 + γ2 + ...)

once again, all the other crossover terms are zero.

9.5 SNR Maximisation

• The SNR may now be expressed as:

|hT s̃|2

E[|hT ṽ|2]
=

α2s̃T s̃

σ2
v(α

2 + β2 + γ2 + ...)

• Scaling h by some factor ρ will not change the SNR since numerator and denominator will both
scale equally be ρ2. So, we can arbitrarily fix |h| = 1 and then maximise.

• With |h| = 1 we have (α2 + β2 + ...) = 1 and the SNR becomes just equal to

α2s̃T s̃

σ2
v
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• The largest possible value of α given that |h| = 1 is 1 and that implies β = γ = 0 and the solution
becomes:

hopt = 1× e0 =
s̃

|s̃|
i.e. the optimal filter coefficients are just the normalised time-reversed signal

• The SNR at the optimal filter setting is given by

SNRopt =
s̃T s̃

σ2
v

and clearly the performance depends very much on the energy of the signal s and the noise v.

9.6 Practical Implementation of the matched filter

• A batch of data of same length as the signal s and optimised a filter h of the same length are
chosen.

• In practice we would now run this filter over a much longer length of data x which maximum
energy occurs. This is the point at which s can be detected and optimal thresholds can be devised
to make the decision on whether a detection of s should be declared at that time.

• In fact, we have only proved that the signal to noise ratio is maximised at one single filter output
time, n = N − 1.However, given a stationary noise process, it is straightforward to show that the
signal output power term for the optimal filter is always less than that computed for n = N − 1
since the deterministic correlation function of sn always has its maximum at lag zero.

• Example: a square pulse radar detection problem

sn = Rectangle pulse =

{
1, n = 0, 1, ..., T − 1
0, otherwise

– Optimal filter is the normalised time reversed version of sn:

hopt
n =

{
1/
√
T , n = 0, 1, ..., T − 1

0 otherwise

– SNR achievable at detection point:

SNRopt =
s̃T s̃

σ2
v

=
T

σ2
v

– Compare with the best SNR attainable before matched filtering:

SNR =
Max signal value2

Average noise energy
=

1

σ2
v

i.e. a factor of T improvement, which could be substantial for long pulses T >> 1
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• Example: saw-tooth pulse:

sn = Sawtooth pulse =

{
n+ 1, n = 0, 1, ..., T − 1
0, otherwise

10 Estimation theory and Inference

• Wiener Filter is a special example of estimation theory

• In general, statistical estimation involves the analysis of random data in order to determine quan-
tities of interest. Wherever models need to be fitted to signal data, or quantitative hypothesis
tested about datasets, estimation and inference will be required.

• Simple examples include the estimation of mean and variance for a collection of random mesure-
ments, while more sophisticated examples might involve the estimation of parameters for some
complex probability model of a signal such as multiple sinusoid model or an autoregressive model.
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10.1 Estimation and Inference

1. In estimation theory, we start off with a vector of signal measurements x:

x =


x0

x1
...

xN−1


and some unknown quantities or parameters that we wish to infer:

θ =


θ0

θ1
...

θP−1


Usually P << N i.e., we have a lot more data than parameters, but in some of the modern
modelling scenarios used in genomics, could be conversely.

2. Suppose the probability distribution of the data x can be expressed in terms of a joint probability
density function (or probability mass function if discrete), or likelihood function:

p(x|θ)

3. The likelihood function forms a generative model for the data, expressing how ‘likely’ different
realisations of the observed data would be if we knew the underlying model parameters θ. This is
conceptually the same thing as the random ensemble in random process theory.

• E.g. A measured battery voltage is

X ∼ N (µ, σ2)

4. In many problems we may treat θ as a random vector, and from physical or other modelling
considerations, a prior probability density function can be formulated for θ:

p(θ)

5. Such a probability distribution will represent prior belief about likely parameter configurations
before any data have been seen. The prior distribution could be used to regularise the inference
problem by constraining the paramter search to reasonable parts of the domain of θ.

• For example, for the battery example, the population of batteries is known to have a mean
around 9V, but we don’t know it exactly. The prior could be assumed Gaussian and centered
on 9V and the prior variance, say 0.1:

p(µ) = N (9, 0.1)

6. A strong prior regulariser would be required for cases where P >> N , for example the notion of
‘sparsity’ in which the prior encodes the notion that only a few of the θ elements are non-zero.
Such framework fit broadly in to the category of Bayesian estimation, since Bayes’ Theorem will
be used to carry out the inference.
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7. In other problems, we may not wish to consider θ to be a random quantity at all. In theses cases
we can rely only on the likelihood function, and this is known as Classical or Likelihood-based
inference. In such cases, it will be hard to regularise the solutions in the way that is possible
within a Bayesian framework, and artificial regularisations may need to be introduced for analysis
of complex models.

8. In Estimation problems, the task will be ti formulate an estimate θ̂ which is close in some sense
to the true θ

9. Inference on the other hand, has estimation as a special case, but is more general in that we
attempt to study the whole probability distribution of the unknown, including the uncertainties
that remain about the value of θ once the data x have been observed

10.2 General Linear Model

10.2.1 Definition

• Models and likelihoods can take all sorts of forms. This class of models includes autoregres-
sive model, the random sinusoid and various ad hoc/physically based structures that find use in
applications.

• The general Linear Model is also known as the Linear Regression model in Machine Learning and
Statistics.

10.2.2 Formulation

1. In the Linear Model it is assumed that the data x are generated as a linear function of the
parameters θ with an additive random modelling error term en:

xn = gTn θ + en

where gn is a P-dimensional column vector

2. The expression may be written for the whole vector x as

x = Gθ + e

where

G =


gT0
gT1
...

gTN−1


3. Choice of the matrix G, the Design Matrix, will lead to a wide range of possible models, G may

contain regression variables from another observed process, structural terms from the model, or
even regressed values of x, as will be seen now
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10.2.3 Example 1: Constant level in noise

Here we have a single parameter θ to model the unknown constant level;

xn = θ = en

and hence a very simple form for the design matrix:

G =


1
1
...
1



10.2.4 Example 2: the Sinusoidal model

• This model forms the basic building block for many frequency and spectral estimation algorithms.
It is also used in sinusoidal speech coders.

• If we write a single sinusoid as the sum of sine and cosine components at a particular (known for
now) frequency ω, we have:

xn = a cos(ωn) + b sin(ωn) + en

where a and b are unknown parameters. This is equivalent to a sinusoid with uniformly random
phase and random amplitude.

• Thus we can form a second order (P = 2) linear model from this if we take:

G =
[
c(ω) s(ω)

]
, θ =

[
a
b

]
where

c(ω) = [cos(0), cos(ω), cos(2ω), ..., cos((N − 1)ω)]T

and
s(ω) = [sin(0), sin(ω), sin(2ω), ..., cos((N − 1)ω)]T
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• And similarly, a more complex model can be built with J sinusoids at different frequencies ωj:

xn =
J∑
j=1

aj cos(wjn) + bj sin(ωn) + en

and the linear model expression is

G =
[
c(ω1) s(ω1) c(ω2) s(ω2) ...c(ωJ) s(ωJ)

]
θ =

[
a1 b1 a2 b2 ... aJ bJ

]T
• Thus we can make up a very complicated signal composed of lots of ‘sinusoids’ all added together.

If we estimate the parameters θ from some data then we will be doing a kind of probabilistic
‘spectrum estimation’.

10.2.5 Example 3: AR model

• The AR model is a standard time series model based on an all-pole filtered version of the noise
residual:

xn =
P∑
i=1

aixn−i + en

where en is the zero mean white noise with variance σ2
e

• The coefficients {ai; i = 1...P} are the filter coefficients of the all-pole filter, the AR parameters,
and P , the number of coefficients, is the order of the AR process.

• {en} can be interpreted as a ‘prediction error’ when predicting the next data point from the
previous P .

• The transfer function for the filter is:

H(z) =
1

1−
∑P

i=1 aiz
−1
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• And hence the power spectrum for the model is :

Sx(e
jΩ) = |H(exp(jΩ))|2σ2

e =
σ2
e

|
∑P

i=1 aie
−jΩi|2

• The shape of the power spectrum may readily be sketched by first sketching the magnitude fre-
quency response of H(z) and then squaring

• The model is used extensively in linear prediction of speech, speech synthesis and coding (especially
in its adaptation to low bitrate CELP encoders)

• The AR modelling equation of (1) is now rewritten for the block of N data samples as

x = Ga + e

where e is the vector of N error values and the (N × P ) matrix G is given by

G =


x−1 x−2 · · · x−(p−1) x−P
x0 x−1 · · · x−(p−2) x−p−1
...

. . .
...

xN−2 XN−3 · · · xN−P xN−P−1


• The G matrix has to contain data values prior to time n = 0 in order to calculate all the error

terms en, n = 0, ..., N − 1.

• This is fa special version of the linear model in which the matrix G is not fixed before making the
measurements, but is actually made up of observed data points, owing to the feedback all-pole
structure of the filter involved.

• This means that we can’t directly generate a vector of data from an AR model using the formula
x = Gθ + e, where e is generated from some suitable noise process, such as white Gaussian noise,
since G now depends on the data we are trying to generate.

• However, we can generate the data sequentially by applying the all-pole IIR filter with coefficient
a1, ..., aP to a white noise input signal.

10.3 AR power spectrum

Follow from the last example, here we can find the power spectrum of the AR model:

• To sketch the power spectrum from the poles, for the general IIR filter:

H(ejΩ) =

∑M
k=0 bke

−jkΩ

1−
∑N

k=1 ake
−jkΩ

and in factorised form (where cq are the zeros and dq the poles):

H(ejΩ) = b0

∏M
q=1(1− cqe−jΩ)∏M
q=1(1− dqe−jΩ)

= b0

e−jMΩ
∏N

q=1(ejΩ − cq)
e−jNΩ

∏N
q=1(ejΩ − dq)
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• For the power spectrum, taking square for the complex modulus:

|H(ejΩ)|2 = b2
0

∏M
q=1 |ejΩ − cq|2∏N
q=1 |ejΩ − dq|2

= b2
0

∏M
q=1 Squared distance from ejΩtocq∏N
q=1 Squared distance from ejΩtodq

• Hence for the AR model look at 1 over the product of squared distances from the unit circle to
each pole, with each pole contributing a peak to the magnitude spectrum (high-Q peaks for poles
close to the unit circle, low - Q peaks for poles distant from the unit circle). Note that low-Q
peaks are easily hidden by neighbouring high-Q peaks:

Figure 12: AR model poles with P = 4, poles at (r, θ) = 0.99 exp(±j0.1π) and (r, θ) = 0.97 exp(±j0.4π)

Figure 13: AR model PSD and DFT showing the similar shape but noisy version. Also showing the
poles

• Next, Einstein-Wiener-Khinchin Theorem is introduced to prove this similar in shape behaviour.
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10.4 Einstein-Wiener-Khinchin Theorem

1. Take a time-windowed version of the signal xn, having duration 2N+1 samples and zero elsewhere;

xNn = wNn xn

where

wNn =

{
1, −N ≤ n ≤ N
0, otherwise

Figure 14: Window function applied to a data

2. Look at the DTFT:

XN(ejΩ) =
∞∑

n=−∞

wNn xne
−jnΩ

• XN(ejΩ) is the DFT of a frame of 2N+1 data points. The shift of the origin back to n = −N
will not affect the magnitude of the DFT calculated, but will introduce a linear phase shift.

3. Now, its modulus squared can be expanded:

|XN(ejΩ)|2 = XN(ejΩ)XN(ejΩ)∗

and hence we can write the following DTFT pair:

DTFT{xNn ∗ xN−n} = XN(ejΩ)XN(ejΩ)∗ = |XN(ejΩ)|2

where xN−n is the time-reversed version of xNn . Notice that we are here using the result:

DTFT{xN−n} =
∞∑

n=−∞

xN−ne
−jnΩ =

∞∑
n′=−∞

xNn′e
jn′Ω = XN(ejΩ)∗

4. Expand the time-domain convolution:

xNn ∗ xN−n =
∞∑

n=−∞

xNn x
N
n−m =

∞∑
n=−∞

xnw
N
n xn−mw

N
n−m
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5. The DTFT results therefore becomes:

DTFT{
∞∑

n=−∞

xnw
N
n xn−mw

N
n−m} = |XN(ejΩ)|2

6. Then divide both side by the window duration (2N + 1) and take expectations on both sides:

1

2N + 1
E

{
DTFT{

∞∑
n=−∞

xnw
N
n xn−mw

N
n−m}

}
=

1

2N + 1
E
{
|XN(ejΩ)|2

}
DTFT{E[

1

2N + 1

∞∑
n=−∞

xnw
N
n xn−mw

N
n−m]} = E[

1

2N + 1
|XN(ejΩ)|2]

7. And rewrite the term with autocorrelation function:

E[
1

2N + 1

∞∑
n=−∞

xnw
N
n xn−mw

N
n−m] =

1

2N + 1

∞∑
n=−∞

rxx[m]wNn w
N
n−m

= rxx[m]
1

2N + 1

∞∑
n=−∞

wNn w
N
n−m

= rxx[m]t[m]

where t[m] is the deterministic autocorrelation function of the window-function wn, as shown in
the graph below:

• To summarise, we have the following DTFT relationship:

DTFT{rxx[m]t[m]} = E[
1

2N + 1
|XN(ejΩ)|2]

• And the DTFT of rxx is the power spectrum, Sx(e
jΩ):

DTFT{rxx[m]t[m]} = Sx(e
jΩ) ∗ T (ejΩ)

where T (ejΩ) is the DTFT of t[m].
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• The plot below shows T (ejΩ) as N increases.

Figure 15: Spectrum of tn as N increases

• As t[m] gets wider and ‘flatter’, so T (ejΩ) tends to a delta function.

• Thus the final limiting expression becomes:

lim
N→∞

DTFT{rxx[m]t[m]} = DTFT{rxx[m]} = Sx(e
jΩ) = lim

N→∞
E[

1

2N + 1
|XN(ejΩ)|2]

• In the limit, we have proved that the power spectrum is proportional to the expected value of the
DTFT-squared of the data.

• The reason that there is a 1/(2N + 1) factor is to make sure t[m] remains finite-energy as N goes
to infinity.

• To summarise, we have:

lim
N→∞

E[
1

2N + 1
|XN(ejΩ)|2] = Sx(e

jΩ)

• The power spectrum is the expected value of the time normalised DTFT-squared of the signal
values. Hence, in our previous AR model example, with finite N , the DFT was random but had
a similar shape to the underlying power spectrum of the process:
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Figure 16: AR model PSD and DFT showing the similar shape but noisy version. Also showing the
poles

10.5 Simple Estimators

We consider the mean and variance for estimators. For example, consider a task to estimate the mean
of a random variable

• Suppose we have a set of N independent samples of a random variable X which has mean µ and
standard deviation σ

– Intuitively we can estimate the mean by taking the average of the samples:

E[µ̂] =
1

N

N∑
i=1

xi

– Intuitively this would be the best way to estimate the mean, but how do we know if it was
a good estimator?

– One way is to say that on average we should expect µ̂ to equal the true mean of X, µ = E[X].

• This can be expressed in terms of expectations. An estimator is termed unbiased if

E[µ̂] = µ

where the expectations is taken with respect to the distribution of all of the random variables Xi;

E[µ̂] =

∫
x1

∫
x2

· · ·
∫
xN

1

N

N∑
i=1

xip(x1)p(x2)...p(xN)dx1dx2 ...dxN

and p(x) is the common pdf of all of the random variables Xi. The mean of X is µ, i.e.

µ =

∫
x

xp(x)dx
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• Such an estimator is described as unbiased, clearly a desirable property. Check that for the
proposed estimator:

E[µ̂] = E

[
1

N

N∑
i=1

Xi

]

=
1

N

N∑
i=1

E[Xi]

= µ

Variance:

• However this is not the end of the whole story. Just because an estimator is correct on average
doesn’t stop it being inaccurate for much of the time. One way of measuring this property for an
estimator is to measure the variance of the estimator:

var(µ̂) = E[(µ̂− E[µ̂])2] = E[µ̂2]− E[µ̂]2

• Now test the variance of the proposed mean estimator:

var(µ̂) = E[µ̂2]− E[µ̂]2 = E[µ̂2]− µ2

• E[µ̂2] simplifies as:

E[µ̂2] = E

( 1

N

N∑
i=1

Xi

)2


=
1

N2

N∑
j=1

N∑
i=1

E[XiXj]

Since the variable Xi are independent,

E[XiXj] =

{
E[X2

i ] = µ2 + σ2, i = j
µ2, i 6= j

• Therefore,

E[µ̂2] =
1

N2
(N2µ2 +Nσ2)

= µ2 + σ2/N

• Hence:
var(µ̂) = E[µ̂2]− E[µ̂]2 = E[µ̂2]− µ2 = µ2 + σ2/N − µ2 = σ2/N

therefore, as N →∞ the variance tends to zero.

Summary:

• An estimator such as this, which is unbiased and whose variance tends to zero as N → ∞ is
termed consistent. Such an estimator will ‘definitely’ get the correct answer with enough data.

• These definitions of unbiased estimators and their variance can in principle be used to measure
the performance of any proposed estimation scheme.

• In fact, estimators can be designed for a given problem specifically to lead to no bias and have
minimum variance. Such estimators are minimum variance unbiased (MVU) estimators.
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10.6 Linear estimator

10.6.1 General Linear Model

General linear model has the form:
x = Gθ + e

First derive the Ordinary Least Squares estimator for the general linear model. Here we will carry out
using matrix-vector derivatives.

1. Try to find the ‘best fit’ model that minimise the following error:

J =
N−1∑
n=0

e2
n = eTe

2. Expand using e = x−Gθ

J = eTe = (x−Gθ)T (x−Gθ) = xTx + θTGTGθ − 2θTGTx

3. By defining the vector gradient in the usual way:

∇φ =
dφ(θ)

dθ
=


∂φ(θ)
∂θ0
∂φ(θ)
∂θ1
...

∂φ(θ)
∂θP−1


we obtain:

dJ

dθ
= 2GTGθ − 2GTx

4. For a stationary point, setting dJ
dθ

= 0

GTGθ = GTx

for invertible GTG ,
θOLS = (GTG)−1GTx

i.e. the classical Ordinary Least Squares estimate of θ

• Another useful way to think about the expansion of J is by ‘completing the square’:

xTx + θTGTGθ − 2θTGTx = (θ − θOLS)TGTG(θ − θOLS)− θOLSTGTx + xTx

• This serves to show that the OLS estimator is globally optimal, and will also come in handy
shortly under likelihood and Bayesian inference schemes.

• We will come back to this under Maximum Likelihood estimation, but for now consider the
properties of the OLS estimator for the General Linear Model.
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10.6.2 Properties of the Linear Estimator

What are the properties and could we ever do better than OLS?

• First consider the bias:

E[θOLS] = E[(GTG)−1GTx] = (GTG)−1GTE[x]

• For the linear model: x = Gθ + e:

E[x] = Gθ + 0 = Gθ

since the noise process {en} has zero mean

• Substituting back into the first expectation gives

E[θOLS] = (GTG)−1GTGθ = (GTG)−1(GTG)θ = θ

hence proving that OLS is unbiased which sounds like good news

10.6.3 Covariance of OLS

Compare the variance to other linear estimators:

• Define the OLS matrix term as
C =(GTG)−1GT

• Then examine the variance of any other unbiased estimator, which we can write:

θ̂ = Dx

where
D = C + ∆

AND ∆ is some matrix perturbation away from the OLS solution.

• For Dx to be unbiased we require that:

E[Dx] = θ,

i.e.
E[(C + ∆)x] = (C + ∆)E[x] = (C + ∆)Gθ = θ + ∆Gθ = θ,

therefore we require
∆G = 0

• Now, the covariance matrix of the estimator of θis

cov(θ̂) = E[(θ̂ − E[θ̂])(θ̂ − E[θ̂])T ]

This is the matrix-vector version of the scalar variance of a random variable. Note in particular
that the (i, i)th element of the covariance matrix is the variance of ˆθi−1

• But since we are dealing only with unbiased estimators we have E[θ̂] = θ and the calculation
reduces to the covariance matrix of the estimation error:

cov(θ) = E[(θ̂ − θ)(θ̂ − θ)T ] = E[θ̂θ̂
T

]− θθT
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• Now, for the linear estimator θ̂ = Dx, we have

E[θ̂θ̂
T

] = E[DxxTDT] = DE[xxT]DT

• And
xxT = (Gθ + e)(Gθ + e)T = GθθTGT + eeT + eθTGT + GθeT

hence
E[xxT] = (Gθ + e)(Gθ + e)T + σ2

eI

since {en} is zero mean white noise with variance σ2
e .s

• Now the expectation is obtained as

E[θ̂θ̂
T

] =DE[xxT]DT

= D(GθθTGT + σ2
eI)DT

= θθT + σ2
eDDT

where the last line is obtained by:

DG = (C + ∆)G = CG + ∆G = CG = I

• Then we have,

cov(θ̂) = E[θ̂θ̂
T

]− θθT = σ2
eDDT

= σ2
e(C + ∆)(C + ∆)T

= σ2
e(CCT + ∆∆T + ∆CT + C∆T)

= σ2
e(CCT + ∆∆T)

= σ2
e((G

TG)−1 + ∆∆T)

• Clearly with ∆ = 0 we have the OLS estimator covariance , so

cov(θ̂) = cov(θOLS) + σ2
e∆∆T

“OLS estimator has the lowest convariance” and the rest part is the positive valued perturbation
term

Summary:

• Now the variance of each parameter estimate ˆθi−1 is the ith diagonal element of cov(θ̂). And the
diagonal elements of ∆∆T are also ≥ 0 by its construction. Hence we have that

var(θ̂i) ≥ var(θOLS
i )

with equality when ∆ = 0

• We have thus proved that the OLs estimator is the minimum variance unbiased estimator of θ.
Such an estimator is termed as Best Linear Unbiased Estimator (BLUE)

• Also it can showed that the OLS is the uniqure BLUE for the Generale Linear Model.

• If in addition we have prior probability information p(θ) about θ then a Bayesian estimator can
give better mean-squared error performance at the cost of some small bias in the estimates
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10.7 Likelihood Estimation

Defining en error term:

• The error sequence e will be assumed i.i.d. , that is

p(e) = pe(e0)pe(e1)...pe(eN−1)

where pe denotes some identical noise distribution. All of the p terms here are pdf. Note that here
not necessarily zero mean so far.

• {en} can be viewed as a modelling error, ‘innovation’ or observation noise, depending upon the
type of model.

• When pe() is the zero-mean normal distribution we have the Linear Gaussian model, sometimes
known as the Gauss-Markov model.

Multivariate Gaussian density function:

• For a length N random column vector X:

fX(x) =
1

N
√

2π det (Cx)
1
2

exp

(
−1

2
(x− µ)TCX

−1(x− µ)

)

• Here µ = E[X] is the mean vector

• And CX = E[(x− µ)(x− µ)T ] is the Covariance Matrix

• Elementwise we have that [CX ]ij = cXiXj the covariance between elements Xi−1 and Xj−1.

10.7.1 Maximum Likelihood (ML) Estimator

• The observed data x is considered random and we often obtain the pdf for x when the value of θ
is known. This pdf is termed the likelihood L(x;θ):

L(x;θ) = p(x|θ)

• The Maximum Likelihood (ML) estimate for θ is the value of θ that maximises the likelihood for
given observations x:

θML = arg max
θ
{p(x|θ)}

• The ML solution corresponds to the parameter vector which would have generated the observed
data x with highest probability.

• The maximisation task required for ML estimation can be achieved using standard differential
calculus for well-behaved and differentiable likelihood functions

• It is convenient analytically to maximises the log-likelihood function

l(x;θ) = log(L(x;θ))

Since log is a monotonically increasing function, the two solutions are identical.

• The likelihood function is arrived at through knowledge of the stochastic model for the data.
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• For example, for Gauss-Markov model we have:

x = Gθ + e

where the noise terms are i.i.d. as zero-mean Gaussian:

p(e) =
N−1∏
n=0

N (en|0, σ2
e) =

N−1∏
n=0

1√
2πσ2

e

e
− 1

2σ2e
e2n

• Which can be rewritten in the vector form:

N−1∏
n=0

1√
2πσ2

e

e
− 1

2σ2e
e2n =

1√
2πσ2

e

e
− 1

2σ2e

∑N−1
n=0 e

2
n =

1√
2πσ2

e

e
− 1

2σ2e
eTe

which is the multivariate Gaussian distribution with mean zero and covariance matrix σ2
eI

p(e) = N (e|0, σ2
eI)

• To get the likelihood p(x|θ), notice that the linear model equation x = Gθ + e is a vector change
of variables,

e→ x

• We are conditioning on θ and therefore we can treat Gθ as a constant term in the change of
variables.

• Hence the change of variables is a very simple one with unity Jacobian and we get

p(x|θ) = pe(e)|e=x−Gθ

• Thus the likelihood is:
L(x;θ) = p(x|θ) = pe(x−Gθ)

• Expanding this out we get:

pe(x−Gθ) =
1

(2πσ2
e)
N/2

exp

(
− 1

2σ2
e

(x−Gθ)T (x−Gθ)

)
and taking logarithms:

logL(x;θ) =− (N/2) log(2πσ2
e)−

1

2σ2
e

(x−Gθ)T (x−Gθ)

=− (N/2) log(2πσ2
e)−

1

2σ2
e

N−1∑
n=0

(xn − gTnθ)2

=
1

2σ2
e

N−1∑
n=0

(xn − gTnθ)2 + constant

• Thus maximisation of this function w.r.t. θ is equivalent to minimising the sum-squared of the
error sequence. This is exactly the criterion which is applied in the familiar ordinary least squares
(OLS) estimation method

71



• Hence we get that ML estimator is:

θML = θOLS = (GTG)−1GTx

Summary:

• In general, then, when the error process {en} is zero-mean independent and Gaussian with fixed
variance, the OLS and ML solutions are identical.

• We would get a different solution if the noise were non-white/Gaussian.

• Moreover, the Bayesian inference method will give a new solution to the estimation problem even
in white Gaussian noise case.

10.7.2 Example: AR model for speech

• We can apply the ML method directly to the AR model.

• We know for the AR model the form of the general linear model is:

x = Ga + e

where e is the vector of N error values and the (N × P ) matrix G is given by

G =


x−1 x−2 · · · x−(p−1) x−P
x0 x−1 · · · x−(p−2) x−p−1
...

. . .
...

xN−2 XN−3 · · · xN−P xN−P−1


• Then, measure some data xd construct G as above from teh data vector and estimate the param-

eters by ML:
aML = (GTG)−1GTx

• This method is often referred to as the ‘covariance’ method.

10.7.3 Estimating the variance

• The noise variance can also be estimated in the Linear Gaussian Model by ML

• To see this, look at the log-likelihood function at the optimal parameter estimate θML aldo con-
sidered as a function of σ2

e :

logL(x;θML, σ2
e) = −(N/2) log(2πσ2

e)−
1

2σ2
e

(x−GθML)T (x−GθML)

= −(N/2) log(2πσ2
e)−

1

2σ2
e

JML

where JML is the minimum squared error term corresponding to the ML optimisation

• Differentiate wrt σ2
e and set to zero to get:

∂logL(x;θML, σ2
e)

∂σ2
e

=
(N/2)

σ2
e

+
JML

2(σ2
e)

2
= 0

and hence
σ2
e

ML
= JML/N
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• Then apply it to some real speech.

• Estimate from recorded speech vector, an AR model a plus variance σ2
e for various orders P

• Reasynthesize some new speech by generating random white Gaussian noise with the estimated
variance:

esynth
n ∼ N (0, σ2

e
ML

)

• Then running the noise through the estimated AR (all-pole) filter:

xsynth
n =

P∑
i=1

aML
i xsynth

n−i + esynth
n

10.8 Bayesian Methods

10.8.1 Definition

• The ML methods treat parameters as unknown constants. If we are prepared to treat parameters
as random variables/vectors it is possible to assign prior pdf to the parameters.

• These pdf should ideally express some prior knowledge about the relative probability of different
parameter values before the data are observed

• Of course if nothing is known a priori about the paramters then the prior distributions should in
some sense express no initial preference for one set of parameters over any other.

• In many cases a prior density is chosen to express some highly qualitative prior knowledge about
the parameters.

– In such cases the prior chosen will be more a reflection of a degree of belief concerning
parameter values than any true modelling of an underlying random process which might
have generated those parameters.

• The willingness to assign priors which reflect subjective information is a powerful feature and
also one of the most fundamental differences between Bayesian and classical (likelihood-based)
inferential procedures.

10.8.2 Properties and Process

• The precise form of probability distributions assigned a priori to the parameters requires careful
consideration since misleading results can be obtained from erroneous priors, but in principle at
least we can apply the Bayesian approach to any problem where statistical uncertainty is present.

• Bayes’ Theorem is now stated as applied to estimation of random parameters θ from a random
vector x of observations, known as the posterior or a posteriori probability for the paramter:

p(θ|x) =

Likelihood︷ ︸︸ ︷
p(x|θ)

prior︷︸︸︷
p(θ)

p(x)︸︷︷︸
Marginal Likelihood / Evidence

Note that all of the distributions in this expression are implicitly conditioned upon all prior
modelling assumptions, as was the likelihood function.
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– The distribution p(x|θ) is the likelihood as used for ML estimation,

– while p(θ) is the prior or a priori distribution for the parameters. This term is one of the crit-
ical differences between Bayesian and classical techniques. It expresses in an objective fashion
the probability of various model parameters values before the data x has been observed.

• The prior density may be an expression of highly subjective information about parameter values.
This transformation from the subjective domain to an objective form for the prior can be of great
significance and should be considered carefully when setting up an inference problem.

• The term p(θ|x) the posterior or a posteriori distribution, expresses the probability of θ given the
observed data x. This is now a true measure of how ‘probable’ a particular value of θ is, given
the observations x

• p(θ|x) is in a more intuitive form for parameter estimation than the likelihood, which expresses
how probable the observations are given the parameters.

• The generation of the posterior distribution form the prior distribution when data x is observed
can be thought of as a refinement to any previous (‘prior’) knowledge about the parameters.

• Before x is observed p(θ) expresses any information previously obtained concerning θ

• Any new information concerning the parameters contained in x is then incorporated to give the
posterior distribution.

• Clearly if we start off with little or no information about θ then the posterior distribution is likely
to obtain information almost solely from x.

• Conversely, if p(θ) expresses a significant amount of information about θ then x will contribute
relatively less new information to the posterior distribution.

• The denominator p(x), referred to as the marginal likelihood, or the ‘evidence’ in machine learning,
is a fundamentally useful quantity in model selection problems, and is constant for any given
observation x; thus it may be ignored if we are only interested in the relative posterior probabilities
of different parameters.

• As a result of this, Bayes’ theorem is often stated in the form:

p(θ|x) = P (x|θ)p(θ)

• p(x) may be calculated in principle by integration:

p(x) =

∫
p(x|θ)p(θ)dθ

and this effectively serves as the normalising constant for the posterior density. For discrete replace
integration with summation.

• We are here implicitly conditioning in this framework on many pieces of additional prior informa-
tion beyond just the prior parameters of the model θ. For example, we are assuming a precise
form for the data generation process in the model

• if the linear Gaussian model is assumed, then the whole data generation process must follow the
probability law of that model, otherwise we cannot guarantee the quality of our answers; the same
argument applies to ML estimation, although in the Bayesian setting the distributional form of
the Bayesian prior must be assumed in addition.

74



10.8.3 Posterior inference

• The posterior distribution gives the probability for any chosen θ given observed data x, and as
such optimally combines our prior information about θ and any additional information gained
about θ from observing x.

• We may in principle manipulate the posterior density to infer any required statistic of θ conditional
upon θ

• This is a significant advantage over ML and least squares methods which strictly give us only a
single estimate of θ, known as a ‘point estimate’.

• However, by producing a posterior p.d.f. with values defined for all θ the Bayesian approach gives
a fully interpretable probability distribution.

• In principle this is as much as one could ever need to know about the inference problem.

• In signal processing problems, however, we usually require a single point estimate for θ, and a
principled way of choosing this is via an expected cost function C(θ̂,θ) which express objectively
a measure of the cost associated with a particular parameter estimate θ̂ when the true parameter
is θ

MAP

• The simplest and most intuitive way to perform Bayesian estimation is the maximum a posteriori
(MAP) estimate, the value of θ̂ which maximises the posterior distribution:

θMAP = arg max
θ
{p(θ|x)}

• In other words, just like ML for the likelihood, we solve to find the parameters θ which maximise
the posterior probability.

• Work through the MAP estimation scheme under the Linear Gaussian model. Suppose that the
prior on parameter vector θ is the multivariate Gaussian:

p(θ) = N (mθ,Cθ) =
1

(2π)P/2|Cθ|1/2
exp

(
−1

2
(θ −mθ)TC−1

θ (θ −mθ)

)
where mθ is the prior parameter mean vector, Cθ is the parameter covariance matrix and P is
the number of parameters in θ

• The likelihood p(x|θ) takes the same form as before for the Ml estimator, so the posterior distri-
bution is as follows:

p(θ|x) ∝p(θ)p(x|θ)

∝ 1

(2π)P/2|Cθ|1/2
exp

(
−1

2
(θ −mθ)TC−1

θ (θ −mθ)

)
1

(2πσ2
e)
N/2

exp

(
− 1

2σ2
e

(x−Gθ)T (x−Gθ)

)
• Then −2× log probability is given by:

−2 log(p(θ|x)) = (θ −mθ)TC−1
θ (θ −mθ) +

1

σ2
e

(x−Gθ)T (x−Gθ) + constant

where the constant term does not depend on θ
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• Hence the MAP estimate θMAP is obtained by differentiation and setting to 0:

θMAP = (GTG + σ2
eC
−1)(GTx + σ2

eC
−1mθ)

Compare to the ML estimator:

θML = θOLS = (GTG)−1GTx

Figure 17: Prior, likelihood and posterior for 1-D Gaussians

• In the expression we can see the ‘regularising’ effect of the prior density on the ML estimate. As
the prior becomes more ‘diffuse’, i.e. the diagonal elements of Cθ increases both in magnitude and
relative to the off-diagonal elements, we imposes ‘less’ prior information on the estimate. In the
limit the prior tends to a uniform (flat) prior with all θ equally probable. In this limit C−1

θ = 0
and the estimate is identical to the ML estimate. This useful relationship demonstrates that the
ML estimate ma be interpreted as the MAP estimate with uniform prior assigned to θ

• The MAP estimate will also tend towards the ML estimate when the likelihood is strongly ‘peaked’
around its maximum compared with the prior. Once again the prior will then have little influence
on the shape of posterior density. It is in fact well known that as the sample size N tends to
infinity the Bayes solution tends to the ML solution/

• This of course says nothing about small sample parameter estimates where the effect of the prior
may be very significant.

• The choice of a multivariate Gaussian prior may well be motivated by physical considerations
about the problem, or it may be motivated by subjective prior knowledge of about the value of θ
before the data x are seen in terms of a rough value mθ and a confidence in that value through
the covariance matrix Cθ. In fact the choice of Gaussian also has the very special property that
it makes the Bayesian calculations straightforward and available in closed form. Such a prior is
known as a ‘conjugate’ prior.

• The required distribution can be obtained by rearranging the log probability function:

1

σ2
e

(x−Gθ)T (x−Gθ) + (θ −mθ)TC−1
θ (θ −mθ) (8)

=
1

σ2
e

(
(θ − θMAP)T (θ − θMAP) + xTx + σ2

em
T
θC−1

θ mθ −ΘTθMAP
)

(9)

with terms defined as

θMAP = φ−1Θ

φ = GTG + σ2
eC
−1
θ

Θ = GTx + σ2
eC
−1
θ mθ
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• The first term in Eq.(9) is in exactly the correct form for the exponent of a multivariate Gaussian,
with mean vector and covariance matrix as follows,

mpost
θ = θMAP Cpost

θ = σ2
eφ

−1

• Since then the remaining terms in Eq.(9) do not depend on θ, and we know that the multivari-
ate density function must be proper (i.e. integrate to 1), we can conclude that the posterior
distribution is itself a multivariate Gaussian,

p(θ|x) = N (θMAP, σ2
eφ

−1).

This formula would allow us to reinterpret the Bayesian estimator for the linear model in terms
of its mean-squared error.

10.8.4 Example: Gaussian Model with one observation

• When P = 1 and N = 1, take G = 1 so that:

x = θ + e

and prior :
p(θ) = N (µθ, σ

2
θ)

• The likelihood is just:

p(x|θ) = N (x|θ, σ2
e) ∝ e

− 1

2σ2e
(x−θ)2

Note that this is Gaussian-shaped as a function of either x or θ.

• Using the above formulae, or re-deriving:

θMAP =
x+ σ2

eµθσ
2
θ

1 + σ2
e/σ

2
θ

=
σ2
θx+ σ2

eµθ
σ2
θ + σ2

e

= αx+ (1− α)µθ

with α =
σ2
θ

σ2
θ+σ2

e
, and

var(θ|x) =
σ2
e

1 + σ2
e/σ

2
θ

=
σ2
eσ

2
θ

σ2
θ + σ2

e

So,

p(θ|x) = N
(
σ2
θx+ σ2

eµθ
σ2
θ + σ2

e

,
σ2
eσ

2
θ

σ2
θ + σ2

e

)
• See plots below for different prior-likelihood trade-offs:
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10.8.5 MMSE Estimation

• Apart from intuition, we have not justified why the MAP estimator is a good thing to do.

• In fact, for the linear model we know that that OLS estimator has the best performance of any
unbiased estimation scheme. (BLUE)

• Could it be, however, that the Bayesian estimator is actually introducing some bias in order to
get better performance in some other sense?

• Now consider more carefully the notion of an expected cost function . C(θ̂,θ) expresses the cost
of estimating the parameter as θ̂ when the true value is θ.

• A suitable cost function is non-negative and usually satisfies C(θ̂,θ) = 0.

• We can write the expected cost over all of the unknown paramters, conditional upon the observed
data x:

E[C(θ̂,θ)] =

∫
θ

C(θ̂,θ)p(θ|x)dθ

• The form of cost function will depend on the requirements of a particular problem.

• A cost of 0 indicates that the estimate is perfect for our requirements, while positive costs indicate
poorer estimates.

• As usual, because of the random properties of the model, we can only estimate the expected cost
of a particular estimator.

• A classic estimation technique related to the Wiener filtering objective function is the Minimum
mean-squared error (MMSE) estimation method. Given some data x we attempt tot find an
estimator θ̂(x) which has minimum squared error, on average:

min
θ̂

E[(θ̂ − θ)2]

Any small bias introduced can be tolerated provided the MSE is low
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• To derive the MMSE estimator we need the conditional distribution of θ given x, p(θ|x), which
will be obtained using Bayes’ theorem:

p(θ|x) =
p(x|θ)p(θ)

p(x)

• The MSE can now be expressed as:

J = E[(θ̂ − θ)2] =

∫
θ

(θ̂ − θ)2p(θ|x)dθ

• Differentiate w.r.t θ gives:

dJ

dθ
=

d

dθ

∫
θ

(θ̂ − θ)2p(θ|x)dθ

=

∫
θ

d

dθ
(θ̂ − θ)2p(θ|x)dθ

=

∫
θ

2(θ̂ − θ)p(θ|x)dθ

and setting to zero: ∫
θ

2(θ̂ − θ)p(θ|x)dθ = 0

and

θ̂

∫
θ

p(θ|x)dθ =

∫
θ

θp(θ|x)dθ

θ̂ × 1 = E[θ|x]

– The LHS is simplified since we have: ∫
θ

p(θ|x)dθ = 1

• Hence we have the result for the MMSE estimator as:

θ̂
MMSE

= E[θ|x] =

∫
θ

θp(θ|x)dθ

• The posterior distribution was obtained as:

p(θ|x) = N (θMAP, σ2
eΦ
−1)

The mean value of this distribution is θMAP

• Hence the MMSE estimator for the Linear Gaussian model is,

θMMSE = θMAP

In other cases, the estimators do not necessarily coincide.
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11 Summary of Estimators

We have examined three important estimation methods, each of increasing sophistication. It was seen
that the Ordinary Least Squares (OLS) estimator was a special case of the Maximum Likelihood (ML)
estimator when the noise was Gaussian with zero-mean and fixed variance. In turn the ML estimator
was a special case of the Maximum a posteriori (MAP) estimator when the prior distribution on θ
was uniform. However, ML requires specific knowledge of the likelihood function and MAP estimation
requires in addition knowledge of a prior density p(θ). The choice of estimator will thus depend on the
degree of knowledge available and the performance required.

The performance of the threee estimators:

• Least Squares

– Requires no knowledge of probability distributions

– Cannot incorporate prior knowledge about parameter probability distributions

– Usually the simplest scheme to implement

– Guarantee of performance as BLUE estimator

– No guarantees of performance compared to nonlinear estimators

• Maximum Likelihood (ML)

– Requires knowledge of noise probability distribution

– Cannot incorporate prior knowledge about parameter probability distributions

– Can be more complicated to implement than LS in the non-Gaussian case

– Performance guaranteed to be optimal when the amount of data is large.

• Bayesian (MAP and MMSE)

– Requires knowledge of noise (model) probability distributions

– Requires knowledge of parameter prior probability distribution (might require subjective
input)

– Incorporates prior knowledge about parameter probability distribution

– Can be more complicated to implement than LS or ML, depending on form of likelihood and
prior

– Performance guaranteed to be optimal for any amount of data (provided prior distribution
is correct)
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